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Abstract:
This material is part of a seminar course/mini-course designed for undergraduate students
in the School of Mathematical Sciences at Shanghai Jiao Tong University in Spring 2025. A
basic understanding of ordinary differential equations (ODEs), partial differential equations
(PDEs), and probability theory is assumed. Familiarity with stochastic processes is prefer-
able, but key concepts will be briefly reviewed in Chapter 1.
Over the course of these four weeks, the lectures will cover the following topics:

• Chapter 1: A review of basic stochastic processes and key preliminary results.

• Chapters 2: An exploration of neural dynamics in control problems. As a remark,
this chapter does not aim to discuss the mathematics of control theory, but rather a
discussion of backpropagation, together with its continuous-time and stochastic gen-
eralizations.

• Chapter 3: An exploration of neural dynamics in generative problems, including dis-
cussions on normalizing flows and probability flows, along with simple applications.

• Chapters 4: Fundamental results in Langevin dynamics, its origin from open classical
systems and applications in sampling.

• Chapter 5: Discuss how one can use Langevin dynamics for generative models, specif-
ically, the diffusion model.

The source code of some examples will be available at https://gitee.com/yucaoyc/
Spring25_StocDynML.

If you spot any errors or have suggestions for improvement, please don’t hesitate to email
me at yucao@sjtu.edu.cn.

https://gitee.com/yucaoyc/Spring25_StocDynML
https://gitee.com/yucaoyc/Spring25_StocDynML
mailto:yucao@sjtu.edu.cn
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Chapter 1

Introduction and Preliminaries

1.1 Introduction
The study of dynamical systems and machine learning has been very closely connected [8]. This is a seminar
course for stochastic dynamics (including deterministic dynamics) and recent machine learning techniques.
Before we delve into topics, we shall review results about dynamical systems, e.g, notions like evolution
operator, and review basic concepts from Stochastic Differential Equations (SDEs). Then we will provide a
very brief introduction to machine learning. As a remark, this mini-course does not aim to be an introductory
course for machine learning.

1.2 Deterministic Dynamics and Evolution Operators
Suppose we consider a deterministic dynamics,

∂tρ(t) = L(t)ρ(t),

where the state space of ρ(t), denoted as S, can be a finite-dimensional vector space, or a proper functional
space. The operator L(t) : S → S can be time-dependent. Then the solution can be written as

ρ(t) = U(t, s)
(
ρ(s)

)
, U(t, s) = T e

∫ t
s
L(r) dr,

where T is the time chronological ordering operator, namely

T
(
A(t1)A(t2)

)
=

{
A(t1)A(t2) if t1 ≥ t2

A(t2)A(t1) if t1 < t2

for appropriate time-dependent operators t 7→ A(t). U(t, s) can be approximated by

U(t, s) ≈ e∆tL(tN−1)e∆tL(tN−2) · · · e∆tL(t0),

where tk = s+ k∆t and ∆t = t−s
N . This is well-known as Lie’s first-order algorithm. Generalizations include

Strang splitting scheme (2 nd order), Lie-Trotter-Suzuki splitting schemes (arbitrary order), and et al.
These abstract results are valid for both general ODEs and PDEs. We remark that if L(t) is anti-

Hermitian (as in the case of Schrödinger’s equation in quantum mechanics), then U(t, s) represents unitary
dynamics.

Lemma 1.1.

d
dtU(t, s) = L(t)U(t, s),

d
dsU(t, s) = U(t, s)

(
− L(s)

)
. (1.1)

4



CHAPTER 1. INTRODUCTION AND PRELIMINARIES 5

A common situation is that L can be split into two parts:

L(t) = LA(t) + LB(t).

A useful tool is called the Duhamel’s principle:

Theorem 1.2 (Duhamel’s principle).

ρ(t) = UA(t, s)ρ(s) +

∫ t

s

UA(t, r) LB(r) ρ(r) dr, (1.2)

where UA(t, s) := T
(
e
∫ t
s
LA(r) dr

)
is the evolution operator for LA only.

Proof. Hint: Duhamel’s principle can be proved by introducing integrating factors; consider estimating
d
dt
(
UA(s, t)ρ(t)

)
and write it in the integral form.

1.3 Stochastic Differential Equations and Fokker-Planck Equa-
tions

This section is prepared by partially referring to the textbook [12].

1.3.1 Brownian motion
Back into 1820s, Robert Brown (a Scottish botanist) discovered the motion of pollen particle in fluid1. Later
Albert Einstein discovered the equation of Brownian motion in 1905 (the other two most famous results in
the same year by Einstein is special relativity and light quanta) [32]. The mathematical theory of Brownian
motion was later formulated by Wiener [12]. Brownian motion is arguably the most famous continuous-time
stochastic process. But what is a stochastic process then?

Definition 1.3 (An informal definition of stochastic process). Suppose there is a probability space (Ω,F ,P),
where Ω is the event space, F is the filtration, and P is the probability measure 2. A stochastic process{
X(t)

}
t∈T

is a time-parameterized family of random variables, where T is the time index, which can be
either discrete or continuous.

For instance, the location of a pollen inside the fluid at time t is a random variable, which can be modeled
via X(t); for the event ω ∈ Ω, X(t, ω) is the location of pollen particle if ω “happens”. The stock price of
amazon in year 2030 is random, which can be modeled via a random variable X(t = 2030); the stock price
of Tencent in year 2030 is also random, which can be modeled via a random variable X̃(t = 2030); clearly,
these stock prices can be imagined to share the same probability space Ω (which can be thought of as all
possibilities of stocks on earth, even though we cannot literally list all outcomes on a paper). This example
explains that for the same space Ω, we can have different stochastic processes.

Definition 1.4 (Brown motion). Brownian motion is a stochastic process with the following properties:

1. B(t)−B(s) (t > s) is independent of all histories up to time s;

2. B(t)−B(s) is a normal random variable N (0, t− s);

3. B(t) is continuous in time t.

Therefore, the transition probability

P (y, t|x, s) = P
(
B(t) = y|B(s) = x

)
=

1√
2π(t− s)

exp
(
− (y − x)2

2(t− s)

)
.

As you may observe in Figure 1.1, the Brownian motion path is a bit “rough”.
1See e.g., https://www.britannica.com/science/Brownian-motion
2F is called the filtration, which can be regarded as a technical part to adapt this notion into the rigorous measure theory;

we will disregard the details for simplicity.

https://www.britannica.com/science/Brownian-motion
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Figure 1.1: Example of Brownian motion trajectories

Theorem 1.5 (Properties of Brownian motion; see [12, Chp. 3, page 64]).

(i) Brownian motion trajectories are continuous but not differentiable.

(ii) Brownian motion trajectories have infinite total variation.

1.3.2 Itô and Stratonovich integrals
Now we need to make sense of stochastic calculus in a heuristic way. For any given continuous function f ,
the integral of Brownian motion can be clearly approximated as follows:∫ T

0

f
(
B(s)

)
ds = lim

N→∞

1

N

N−1∑
k=0

f
(
B(sk)

)
, (sk = k∆s, ∆s =

T

N
).

As Brownian motion s 7→ B(s, ω) is a continuous function (also uniformly continuous), the above definition
(in the pointwise limit sense) is mathematically valid.
Remark. To understand why we need this, imagine the following artificial situation. Suppose a certain stock
price exactly follows the Brownian motion, and someone bet with you that for every minute in the next hour,
for each outcome B(s) you will earn f

(
B(s)

)
∆s dollars (of course if the value is negative, it means you lose

dollars). The time interval is 1
60 = ∆s, and your total asset is exactly 1

N

∑N−1
k=0 f

(
B(sk)

)
. Of course, it is

reasonable to model this problem using continuous time as time interval ∆s is small. This will motivates
the definition of the integral

∫ b

a
f
(
B(s)

)
ds on the interval

[
a, b

]
.

Exercise 1.6. Compute the probability of events
{
ω :

∫ 1

0
B(s, ω) ds > 1

}
.

Proof. Hint: first prove that
∫ 1

0
B(s, ω) ds is a normal random variable with mean 0 and variance 1/3.

However, things becomes tricky when we want to take the integral of “
∫ T

0
X(t) × dB(t)”. In this case,
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dB(t) kind of plays the role as time-rescaling. Suppose that G(t) is a given differentiable function, then∫ T

0

X(t) dG(t) =

∫ T

0

X(t) G′(t) dt ≈
N−1∑
k=0

X(sk)

∫ sk+1

sk

G′(s) ds

=

N−1∑
k=0

X(sk)
(
G
(
sk+1

)
−G

(
sk
))

.

(1.3)

Similarly, we can also approximate the integral via∫ T

0

X(t) dG(t) =

∫ T

0

X(t)G′(t) dt ≈
N−1∑
k=0

X(sk) +X
(
sk+1

)
2

∫ sk+1

sk

G′(s) ds

=

N−1∑
k=0

X(sk) +X
(
sk+1

)
2

(
G
(
sk+1

)
−G

(
sk
))

.

(1.4)

Exercise 1.7. If G has finite total variation (e.g., when G is continuously differentiable), then the approx-
imations in (1.3) and (1.4) are the same in the large N limit.

However, the above two approximations are distinct for Brownian motions (as Brownian motion has
infinite total variation).

Itô integral :
∫ T

0

X(t) dB(t) = lim
N→∞

N−1∑
k=0

X(sk)
(
B
(
sk+1

)
−B

(
sk
))

Stratonovich integral :
∫ T

0

X(t) ◦ dB(t) = lim
N→∞

N−1∑
k=0

X
(
sk
)
+X

(
sk+1

)
2

(
B
(
sk+1

)
−B

(
sk
)) (1.5)

Using the above definitions, we can verify the following two results.
Example 1.8. For Itô and Stratonovich integrals, we have the following results respectively:

E
(∫ T

0

B(t) dB(t)
)
= 0, E

(∫ T

0

B(t) ◦ dB(t)
)
=

T

2
.

Therefore, these two definitions are clearly different.
Lemma 1.9 (Properties of Itô integral). Suppose that X(t) is F(t)-adapted, then

• (Zero mean) E
( ∫ T

0
X(t) dB(t)

)
= 0.

• (Itô isometry) E
( ∫ T

0
X(t) dB(t)

)2

=
∫ T

0
E
(
X(t)2

)
dt.

These can be proved (at least formally) directly using definitions (1.5). The proofs are left as exercises.

1.3.3 Stochastic differential equations (SDEs)
Definition 1.10 (Stochastic Differential Equations, SDEs). Suppose a stochastic process X(t) satisfies the
following:

X(t) = X(0) +

∫ t

0

b
(
X(s), s

)
ds+

∫ t

0

σ
(
X(s), s) dB(s) with probability one, (1.6)

where b : Rd × R → Rd, σ : Rd × R → Rd×d, 3 then X(t) is called the solution to the following SDE

dX(t) = b
(
X(t), t

)
dt+ σ

(
X(t), t

)
dB(t). (1.7)

If the integral inside (1.6) is replaced by Stratonovich integrals, then the corresponding SDE is denoted as

dX(t) = b
(
X(t), t

)
dt+ σ

(
X(t), t

)
◦ dB(t). (1.8)

3Diffusion coefficient σ does not necessarily needs to be a square matrix, but we use simpler cases without loss of generality.
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Theorem 1.11 (Relationship between Itô and Stratonovich SDEs).

(i) Suppose X(t) follows the Stratonovich SDEs

dX(t) = b
(
X(t), t

)
dt+ σ

(
X(t), t

)
◦ dB(t),

then X(t) also follows the following Itô SDE (with a different drift function):

dX(t) =
(
b(X(t), t) + θ(X(t), t)

)
dt+ σ(X(t), t) dB(t), (1.9)

where θi
(
X(t), t

)
:= 1

2

∑
j,k ∂xk

σi,j

(
X(t), t

)
σk,j

(
X(t), t

)
.

(ii) For 1D case (d = 1), one has the following simplified expression:

dX(t) =
(
b
(
X(t), t

)
+

1

2
∂xσ

(
X(t), t

)
σ
(
X(t), t

))
dt+ σ

(
X(t), t

)
dB(t).

Proof. For Stratonovich SDEs,

∆X(t) = b(X(t), t)∆t+
σ(X(t+∆t), t+∆t) + σ(X(t), t)

2
∆B(t) + o(∆t)

= b(X(t), t)∆t+ σ(X(t), t)∆B(t) +
σ(X(t+∆t), t+∆t)− σ(X(t), t)

2
∆B(t) + o(∆t)

= b(X(t), t)∆t+ σ(X(t), t)∆B(t) + θ(X(t), t) + o(∆t),

where

θi(X(t), t) =
∑
j

σi,j(X(t+∆t), t+∆t)− σi,j(X(t), t)

2

(
∆B(t)

)
j

=
1

2

∑
j,k,ℓ

∂xk
σi,j

(
X(t), t

)
σk,ℓ

(
X(t), t

)(
∆B(t)

)
ℓ

(
∆B(t)

)
j
+ o(∆t)

=
1

2

∑
j,k

∂xk
σi,j

(
X(t), t

)
σk,j

(
X(t), t

)
∆t+ o(∆t)

where in the last line, we used the fact that
(
dBj(t)dBk(t)

)
= δj,kdt (which can be more rigorously established

using the law of large numbers). The proof is complete after simplifying notations.

Theorem 1.12 (Itô’s formula and Stratonovich’s formula). Suppose f ∈ C2(Rd × R).

(i) Suppose X(t) follows the Itô SDE (1.7), then

df
(
X(t), t

)
= ∂tf

(
X(t), t

)
dt+∇xf

(
X(t), t

)
· dX(t) +

1

2
(σσT)

(
X(t), t

)
: ∇2

xf
(
X(t), t

)
dt

≡ ∂tf
(
X(t), t

)
dt+∇xf

(
X(t), t

)
· b
(
X(t), t

)
dt+

(
∇xf

(
tX(t), t

))T
σ
(
X(t), t

)
dB(t)

+
1

2
(σσT)

(
X(t), t

)
: ∇2

xf
(
X(t), t

)
dt.

(1.10)

We will denote D(x, t) := 1
2 (σσ

T)(x, t) and the notation D : ∇2f means
∑d

i,j=1 Di,j∇xi,xj
f .

(ii) Suppose X(t) follows the Stratonovich SDE (1.8), then

df
(
X(t), t

)
= ∂tf

(
X(t), t

)
dt+∇xf(X(t), t) · dX(t)

≡ ∂tf
(
X(t), t

)
dt+∇xf

(
X(t), t

)
· b
(
X(t), t

)
dt+

(
∇xf

(
X(t), t

))T
σ
(
X(t), t

)
◦ dB(t).

(1.11)
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Proof. Below are heuristic proofs for illustrating main ideas.

Proof of Part (i). By Taylor’s expansion,

f
(
X(t+∆t), t+∆t

)
− f

(
X(t), t

)
= ∂tf

(
X(t), t

)
∆t+∇xf

(
X(t), t

)
·
(
X(t+∆t)−X(t)

)
+

1

2

(
X(t+∆t)−X(t)

)T∇2
xf

(
X(t), t

)(
X(t+∆t)−X(t)

)
+ o

(
∆t)

= ∂tf
(
X(t), t

)
∆t+∇xf

(
X(t), t

)
·
(
X(t+∆t)−X(t)

)
+

1

2
∆B(t)⊤σ

(
X(t), t

)T∇2
xf

(
X(t), t

)(
σ(X(t), t)∆B(t)

)
+ o

(
∆t).

The cross product terms
(
∆B(t)

)
i

(
∆B(t)

)
j

(i 6= j) has negligible contributions. Hence,

f
(
X(t+∆t), t+∆t

)
− f

(
X(t), t

)
= ∂tf

(
X(t), t

)
∆t+∇xf

(
X(t), t

)
·
(
X(t+∆t)−X(t)

)
+

1

2

∑
j,ℓ

(
∇2f

(
X(t), t

))
ℓ,j

(
σσT(X(t), t

))
ℓ,j
∆t+ o

(
∆t).

By writing the l.h.s as df
(
X(t), t

)
∆t, and by matching terms, one can obtain (1.7).

Proof of Part (ii). Suppose X(t) follows the Stratonovich SDE (1.8), then it follows the SDE (1.9). By
part (i), we have

df
(
X(t), t

)
=∂tf

(
X(t), t

)
dt+∇xf

(
X(t), t

)
·
(
b
(
X(t), t

)
+ θ

(
X(t), t

))
dt

+
(
∇xf

(
X(t), t

))T
σ
(
X(t), t

)
dB(t)

+
1

2
(σσT)

(
X(t), t

)
: ∇2

xf
(
X(t), t

)
dt.

(1.12)

Let us transform this back into Stratonovich SDE. Imagine that the corresponding Stratonovich SDE has
the form

df
(
X(t), t

)
=∂tf

(
X(t), t

)
dt+∇xf

(
X(t), t

)
·
(
b
(
X(t), t

)
+ θ

(
X(t), t

))
dt

+
1

2
(σσT)

(
X(t), t

)
: ∇2

xf
(
X(t), t

)
dt+ κ

(
X(t), t

)
dt

+
(
∇xf

(
X(t), t

))T
σ
(
X(t), t

)
◦ dB(t),

(1.13)

where κ is a term to be determined. By following the same calculation as in Theorem 1.11, we know that
the relevant Ito’s SDE for the last equation is

df
(
X(t), t

)
=∂tf

(
X(t), t

)
dt+∇xf

(
X(t), t

)
·
(
b
(
X(t), t

)
+ θ

(
X(t), t

))
dt

+
1

2
(σσT)

(
X(t), t

)
: ∇2

xf
(
X(t), t

)
dt+ κ

(
X(t), t

)
dt

+
(
∇xf

(
X(t), t

))T
σ
(
X(t), t

)
dB(t)

+
1

2

∑
i,j,k

∂xk

(
∂xi

fσi,j

)
σk,j

∣∣∣(
X(t),t

)dt.

(1.14)

By matching terms in (1.12) and (1.14), we have

κ
(
X(t), t

)
+

1

2

∑
i,j,k

∂xk

(
∂xi

fσi,j

)
σk,j

∣∣∣(
X(t),t

) = 0,
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which means,

κ =
1

2

∑
i,j,k

(
− ∂i,kfσi,jσk,j − ∂if∂kσi,jσk,j

)
= −D : ∇2f −

(
∇xf

)
· θ.

Therefore, (1.13) can be simplified to (1.11).

Example 1.13. A widely used example is the Ornstein-Uhlenbeck process:

dX(t) = aX(t) dt+ σ dB(t), (1.15)

whose solution can be explicitly written as

X(t) = eatX0 + σ

∫ t

0

ea(t−s) dB(s).

The mean is E
[
X(t)

]
= eatE

[
X0

]
, the variance is

Var
(
X(t)

)
= e2atVar

(
X0

)
+ σ2

∫ t

0

e2a(t−s) ds. (1.16)

Proof. By Lemma 1.9 and Theorem 1.12.

Exercise 1.14. Write code to simulate the above Ornstein-Uhlenbeck (1.15) and verify (1.16) numerically.

Exercise 1.15 (1D Geometric Brownian Motion). The geometric Brownian motion is the SDE behind
Black–Scholes equation which is widely used as a typical model in finance:

dX(t) = αX(t) dt+ σX(t) ◦ dB(t). (1.17)

(i) Prove that the SDE (1.17) is equivalent to the following Itô’s SDE form

dX(t) =
(
α+

1

2
σ2

)
X(t) dt+ σX(t) dB(t).

(ii) Prove that the explicit solution of the above SDE (1.17) is

X(t) = X(0) exp
(
αt+ σB(t)

)
≡ X(0) exp

(∫ t

0

α+ σ ◦ dB(s)
)
.

1.3.4 Fokker-Planck equation
The probability density function of X(t), denoted as p(x, t), satisfies a certain type of PDEs, well-known as
Fokker-Planck equations. Let us consider the Itô SDE for example. Suppose g is any compactly supported
smooth function, then ∫

g(x)p(x, t) dx = E
(
g
(
X(t)

))
.

Let us take derivatives on both sides,( ∫
g(x)∂tp(x, t) dx

)
∆t+ o(∆t) = E

(
∆g

(
X(t)

))
= E

(
∇xg

(
X(t)

)
· b
(
X(t), t

)
+

1

2
(σσT)

(
X(t), t

)
: ∇2

xg
(
X(t)

) )
∆t+ o(∆t)

=

(∫
∇xg(x) · b(x, t)p(x, t) +Di,j(x, t)∇xi,xj

g(x) p(x, t) dx
)

∆t+ o(∆t)

=

(∫
−g(x)∇x ·

(
b(x, t)p(x, t)

)
+ g(x)∇xi,xj

(
Di,j(x, t)p(x, t)

)
dx

)
∆t+ o(∆t).

In the limit of small ∆t and since g is arbitrary, one has:
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Theorem 1.16. The evolution of p(t, ·) for Itô SDE (1.7) satisfies the following PDE

∂tp(x, t) =−∇x ·
(
b(x, t)p(x, t)

)
+

∑
i,j

∇xi,xj

(
Di,j(x, t)p(x, t)

)
≡−∇x ·

(
b(x, t)p(x, t)

)
+∇2

x :
(
D(x, t)p(x, t)

)
.

(1.18)

Example 1.17. When σ(x, t) =
√
2 Id is independent of time and space, then the Fokker-Planck equation

can be simplified as

∂tp(x, t) = −∇x ·
(
b(x, t)p(x, t)

)
+∆p(x, t).

Exercise 1.18. Verify that when b(x, t) = −∇U(x) and σ(x, t) =
√
2Id, where U is an appropriate

potential function, one stationary solution of the Fokker-Planck equation is p∞(x) = e−U(x)/Z where
Z =

∫
Rd e

−U(x) dx is a normalizing constant. This Itô SDE is well-known as the overdamped Langevin
dynamics, which has been widely used for sampling in statistics (see Chapter 4).

1.4 A Heuristic Introduction to Machine Learning
Machine learning problems are typically formulated in terms of an optimization problem

min
θ

L(θ) =

N∑
i=1

ωifi(θ). (1.19)

where ωi ∈ R is the weight, fi is a family of functions, and θ is the parameter to find.

The success of machine learning relies on at least the following:

• high-quality data xi; the data can come from either realistic problems (for many AI products),
or comes from generative process via some existing processes (perhaps more common in AI for
Science);

• a good way to turn the original problems into an optimization problem with effective parameteri-
zation (e.g., a neural network like below); this means a good choice of f overall;

• an efficient optimization algorithm.

We will go through these ingredients for different tasks in the following chapters, as there is no universal
practical way to design f and find xi.

Input
Layer

Hidden
Layer

Output
Layer

Figure 1.2: A basic structure of a two-layer neural network.
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1.4.1 Discussion on the origins of data and loss functions
The data can come from either the realistic problems or from generated data.

Example 1.19 (Classification Problems). Suppose xi represents image data, and suppose x 7→ g(x, θ) is
a parameterized mapping that decides the probability of certain events to occur, e.g., the probability that
the medical image contains a cancer. Suppose we have some labeled data yi ∈ {0, 1} that represent whether
an image contains a cancer (this is where the data comes from). Therefore, to minimize the gap between
prediction and the actual data, one may want to minimize the mean-square error

1

N

N∑
i=1

|g(xi, θ)− yi|2︸ ︷︷ ︸
denoted as fi(θ)

.

Of course, one may use any monotone function φ, and design a loss function as

1

N

N∑
i=1

φ
(
g(xi, θ)− yi

)︸ ︷︷ ︸
denoted as fi(θ)

.

Example 1.20 (Deep Ritz [9]). Suppose one wants to solve the Poisson’s equation{
−∆u = ϕ in Ω;

u = 0, on ∂Ω.

Then one can show that it is equivalent to solve the following optimization problem

min
u

1

2

∫
Ω

|∇u(x)|2 dx−
∫
Ω

u(x)ϕ(x) dx.

This PDE model finds wide applications, e.g., in electrostatics. 4 To incorporate the boundary conditions,
we may minimize the following in practice

min
u

1

2

∫
Ω

|∇u(x)|2 dx−
∫
Ω

u(x)ϕ(x) dx+ λ

∫
∂Ω

|u(x)|2 dx.

where λ is a hyper-parameter for penalty term arising from boundary conditions. Then we can parameterize
the solution via a class of functions uθ, and also deterministically or randomly pick sample points xi ∈ Ω
and zi ∈ ∂Ω to approximate the integral via

min
θ

∑
i

ωi

(1
2

∣∣∇uθ(xi)
∣∣2 − uθ(xi)ϕ(xi)

)
+ λ

∑
i

ωi

(
uθ(zi)

)2
,

where ωi, ωi is the weight in the quadrature. This again falls into the above form (1.19). 5

Example 1.21 (Physics-Informed Neural Network [25]). Suppose one wants to solve the differential equation{
L(u) = 0, in Ω;

u = 0, on ∂Ω.

Imagine that we pick sample points
{
xi

}N

i=1
from the domain Ω and

{
zi
}M

i=1
from the boundary ∂Ω, then

one may minimize the following

min
θ

1

N

N∑
i=1

(
L(uθ)(xi)

)2
+ λ

1

M

M∑
i=1

(
uθ(zi)− 0

)2
,

and λ is a hyper-parameter. This again falls into the above form (1.19). 6

4 https://en.wikipedia.org/wiki/Poisson%27s_equation.
5See https://github.com/yucaoyc/math6008_num_pde/blob/main/chp08-1D-Poisson.ipynb for illustrative codes.
6see the above footnote.

https://en.wikipedia.org/wiki/Poisson%27s_equation
https://github.com/yucaoyc/math6008_num_pde/blob/main/chp08-1D-Poisson.ipynb
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1.4.2 Examples of architecture: residual neural network and ODEs
There are many architectures, from the simplest fully connected neural network, to convolutional neural
network (CNN), to Recurrent Neural Network (RNN), to Residual Network (ResNet), and to more recent
ones like Transformers. The study of their performances and their expressibility is an active research field.

Though perhaps not a one-to-one correspondence, there is a tight connection between dynamical systems
and neural network architectures. We follow the discussion in [8] below. The deep Residual network takes
the following form

yℓ = h(zℓ) + F(zℓ,Wℓ), zℓ+1 = g(yℓ), or in the form zℓ+1 = g
(
h(zℓ) + F(zℓ,Wℓ)),

where zl are intermediate layers, and yℓ are auxiliary variables. Suppose F has a small magnitude, and
g = h are identity mapping, then

zℓ+1 = zℓ + F(zℓ,Wℓ),

can be regarded as Euler-discretization of a certain ODE dynamics. There are other connections — normal-
izing flow can be regarded as discretization of ODE/probability flows; see later chapters.

1.4.3 Optimization algorithms: SGD
The Gradient Descent (GD) is perhaps one of the easiest algorithms to solve an optimization problem.
However, GD algorithm is well-known to fail to find a good estimates of global minimum when the loss
function is not convex. For machine learning problems, typically, we use Stochastic Gradient Descent (SGD),
or other more complicated algorithms [26]. We shall simply explain SGD for illustration.

Suppose the loss function is (1.19) and suppose the weight ωi = 1/N for simplicity. The SGD refers to
the following iterative algorithms

θk+1 = θk − hk∇θfik(θk),

where the index ik is randomly drawn with probability ωi = 1/N , and hk > 0 is called the learning rate.
Note that ∇fik(θ) is random variable with unbiased mean ∇θL(θ):

E
[
∇θfik(θ)

]
= ∇θL(θ).

Of course, there is an intermediate region between GD and SGD, which is called Mini-batch gradient descent
— which is less fluctuation than SGD, and has more exploring power than GD [26].

Theorem 1.22 (See e.g., [27]). Assume that

• The loss function L is bounded from below by L∗ (the global minimum value);

• The gradient of loss function ∇L is L-Lipschitz;

• E
[
‖∇fi(θ)‖2

]
≤ σ2 for any θ.

Then

min
k=0,1,··· ,K−1

E‖∇L(θk)‖2 ≤ L(θ0)− L∗∑K−1
k=0 hk

+
Lσ2

2

∑K−1
k=0 h2

k∑K−1
k=0 hk

.

If hk = h is independent of k, then the error scales like O( 1
K + h).

Proof. See slides 3-6 from [27].

Exercise 1.23. When hk = h/k and hk = h/
√
k, please find the scaling of error with respect to K. Answers

can be found in [27].
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Theorem 1.24 (See e.g., [27]). Under the same assumption as Theorem 1.22, if we further assume that
∇2L(θ) ≥ µ I for any θ (namely, the strongly convex assumption holds) and assume that hk = h < 2

µ (small
enough), then

E
[
‖θk − θ∗‖2

]
≤ (1− 2hµ)k‖θ0 − θ∗‖2 + hσ2

2µ
, ∀k.

This suggests that for a large enough k, θk is close to θ∗ with distance
√

hσ2/(2µ). By Markov inequality,

P
(
‖θk − θ∗‖ ≥ ϵ

)
≤

E
[
‖θk − θ∗‖2

]
ϵ2

≈ hσ2

2µϵ2
.

For instance, when ϵ = 10
√

hσ2/(2µ), one has P
(
‖θk − θ∗‖ ≥ ϵ

)
≤ 1% for large enough k.

Proof.
E
[
‖θk+1 − θ∗‖2

]
= E

[
‖θk − θ∗ − h∇θfik(θk)‖

2]
= E

[
‖θk − θ∗‖2 − 2h(θk − θ∗) · ∇θfik(θk) + h2‖∇θfik(θk)‖

2

]
≤ E

[
‖θk − θ∗‖2 − 2hµ‖θk − θ∗‖2

]
+ h2σ2

≤ (1− 2hµ)E
[
‖θk − θ∗‖2

]
+ h2σ2.

By the iterative relation,
E
[
‖θk − θ∗‖2

]
≤ (1− 2hµ)k‖θ0 − θ∗‖2 + h2σ2

(
(1− 2hµ)0 + (1− 2hµ)1 + · · ·+ (1− 2hµ)k−1

)
≤ (1− 2hµ)k‖θ0 − θ∗‖2 + hσ2

2µ
.

1.5 Notations
By default, we take the column-based vector form rather than row-based vector form. Suppose z ∈ Rd 7→
f(z) ∈ Rd, then ∇zf(z) is a matrix whose (i, j)th element is ∂zjfi(z). Suppose z ∈ Rd 7→ F (z) ∈ Rd×d, then
∇zF (z) is a 3-fold tensor whose (i, j, k)th element is ∂zkFi,j(z). For any arbitrary vector v, we use notation

∇Fv :=
[∑

k

∂xk
Fi,jvk

]
i,j

which is a matrix.

1.6 Further Readings
• Theory of Stochastic Calculus: For further details on fundamental results of stochastic calculus,

one may refer to e.g., [12, 24].

• Numerical Methods of Stochastic Calculus: For further details on numerical methods for stochas-
tic dynamics, one may refer to [13].

• Deep Learning: For background on machine learning (in particular, deep learning), one may refer
to e.g., [4]. For more optimization algorithms and practical challenges, one may refer to e.g., [26].
One may also refer to course materials e.g., by Mark Schmidt (UBC) at https://www.cs.ubc.ca/
~schmidtm/Courses/540-W19/, and by Martin Jaggi and Nicolas Flammarion (EPFL) at https:
//github.com/epfml/OptML_course.

• Learning to Code a ML Project: 深入浅出 PyTorch. https://datawhalechina.github.io/
thorough-pytorch/ This is a Chinese book that introduce you to code in PyTorch for machine learning
problems.

https://www.cs.ubc.ca/~schmidtm/Courses/540-W19/
https://www.cs.ubc.ca/~schmidtm/Courses/540-W19/
https://github.com/epfml/OptML_course
https://github.com/epfml/OptML_course
https://datawhalechina.github.io/thorough-pytorch/
https://datawhalechina.github.io/thorough-pytorch/


Chapter 2

Neural Dynamics for Control
Problems

2.1 Introduction
Problem: For many control problems, our goal is to find a certain dynamics, such that the resulting
dynamics at a certain time T satisfies a certain condition, either matching a certain value, or minimizes
a certain target value (namely, loss function).

The dynamics itself may have additional constraint itself.

• (Deterministic Network). Suppose we consider a neural network with layer depth ℓ and width Nd

and let us consider a simple setup:

f = fℓ ◦ fℓ−1 ◦ · · · ◦ f1

where each fi : RNd → RNd are parameterized functions. For simplicity, let us denote

y1 = f1(x), y2 = f2(y1), · · · , yℓ = fℓ
(
yℓ−1

)
.

For the control problem, one wants the final output state to satisfy certain criterions, e.g., one may
want to minimize

min
θ

L(yℓ) (2.1)

where L is a certain loss function, and θ are parameters inside functions fi.

• (Neural ODE). If each layer takes the form of Residual Network and each fi ≈ I, then one may
regard this network as an approximation of an ordinary differential equation (ODE). Suppose we
consider z(t, θ) : R× RNp → RNd :

dz(t, θ)
dt = f

(
z(t, θ), t, θ), (2.2)

where θ is the control parameter, and (z, t, θ) 7→ f(z, t, θ) is the ODE flow for consideration. The
target is to find such a function f such that the output state z(T, ·) satisfies certain conditions.

• (Neural SDE). We can further extend the setup to the probability space Ω. Suppose we consider
X(t, θ, ω) : R× RNp × Ω → RNd :

dX(t, θ) = b
(
X(t, θ), t, θ

)
dt+ σ

(
X(t, θ), t, θ

)
◦ dB(t), (2.3)

where θ is the control parameter, and (z, t, θ) 7→ b(z, t, θ) is the drift and (z, t, θ) 7→ σ(z, t, θ) is the
diffusion coefficient. The target is again to find such a function b and σ, such that the output state
X(T, ·) satisfies certain conditions.

15
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2.2 Backpropagation
Our goal is to find a parameter to solve (2.1). In order to use many gradient-based optimization algorithm, we
have to be able to compute the gradient of L(yℓ) with respect to the parameters inside the layer. One widely
used efficient method is called the backpropagation [4, Chapter 8], which we will review below. Suppose fi
has parameters θ

(i)
j where the index j characterize the index of parameters for this layer.

By the chain rule, when we compute, e.g.,

dL(yℓ)
dθ(1)λ

=
∑

j1,j2,··· ,jℓ=1,··· ,Nd

∂L

∂(yℓ)jℓ
(yℓ) ·

∂(yℓ)jℓ
∂(yℓ−1)jℓ−1

(yℓ−1) · · ·
∂(y1)j1

∂θ
(1)
λ

(x). (2.4)

For the forward process, one compute yj in the forward order; to compute the gradient, one may start with
∂L

∂(yℓ)jℓ
(yℓ) and backwardly update the gradient value in a backward manner.

Example 2.1. Let us consider the fully-connected neural network without the bias term for simplicity:

yk = fk(yk−1) ≡ ς
(
W (k)yk−1

)
,

where W (k) is the weight matrix with size Nd ×Nd and ς is an activation function. Then

∂(yk)jk
∂(yk−1)jk−1

(yk−1) = ς ′(W (k)yk−1)jkW
(k)
jk,jk−1

.

• As one needs to save all intermediate steps
{
yk
}
k=1,2,··· ,ℓ, one requires O(Ndℓ) total memory cost. As

we also need to store
[dL(yℓ)

dθ(1)
λ

]
λ=1,2,··· ,N2

d

, the memory cost is O
(
N2

d ℓ
)
, which is essentially the number

of parameters. In any case, the memory clearly scales linearly with respect to the depth ℓ.

• The total computational cost for the backpropagation of (2.4) is

O
(
N2

d ℓ
)
= O(total number of parameters),

where the cost of N2
d comes from matrix-vector multiplication for each layer and inside (2.4).

Exercise 2.2 (Comparison with FDM). Please compare the cost of backpropagation with the central finite
difference method, e.g.,

dL(yℓ)
dθ(1)λ

=
L
(
yℓ
(
θ
(1)
λ + ϵ

))
− L

(
yℓ
(
θ
(1)
λ − ϵ

))
2ϵ

+O
(
ϵ2
)
.

In particular, prove that to compute the gradient of the loss with respect to all parameters in weight, one
requires O

(
N4

d ℓ
2
)
= O

(
total number of parameters2

)
; see the discussion e.g., in [4, Chapter 8].

Automatic Differentiation

Automatic differentiation is a well-implemented computer technique to compute gradient automatically based
on the above chain rule. The forward-mode automatic differentiation computes (2.4) from right to left,
and the reverse-mode automatic differentiation computes (2.4) from left to right. Whether one should use
forward-mode or reverse-mode automatic differentiation depends on the dimension of input and output
variables. For machine learning problems, one typically has a large number of parameters where the output
dimension is small (or perhaps one). Then generally, reverse-mode automatic differentiation is preferred.
But for a specific problem, it is better to analyze it case-by-case.
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2.3 Neural ODEs
Our goal is to find the parameter θ such that

min
θ

L
(
z(T, θ)

)
,

where L is a scalar-valued function. Suppose that we use a gradient-based optimization method, e.g., gradient

descent method, then we need to estimate dL
(
z(T,θ)

)
dθ . A core ingredient in Neural ODE [5] is to find an

efficient way to compute this quantity.

Theorem 2.3 (Results in [5]). We consider the ODE in (2.2) with the initial time T0 and the final time T .
Suppose that z(T0, θ) = z0 is fixed, and L(·), f(·, ·, ·) are continuously differentiable. Then

(
∇θL(z(T, θ))

)T
=

∫ T

T0

a(s)T ∂θf
(
z(s, θ), s, θ

)
ds

d
dsa(s) = −

(
∂zf(z(s, θ), s, θ)

)T
a(s), s ∈ [T0, T ];

a(T ) = ∇L
(
z(T, θ)

)
.

(2.5)

where ∂θf(z(s, θ), s, θ) =
[
∂θ1f(z(s, θ), s, θ) · · · ∂θNp

f(z(s, θ), s, θ)
]
∈ RNd×Np , and a(s) ∈ RNd×1. Alter-

natively, one could compute ∇θL(z(T, θ)) via running the following system of ODEs for time s ∈ [T0, T ],
dy(s)

ds = −
(
∂θf(z(s, θ), s, θ)

)T
a(s), y(T ) = 0Np×1;

d
dsa(s) = −

(
∂zf(z(s, θ), s, θ)

)T
a(s), a(T ) = ∇L

(
z(T, θ)

)
.

(2.6)

The output y(T0) = ∇θL
(
z(T, θ)

)
.

Exercise 2.4. How does the storage resource and computational time scale with respect to Nd and Np?

The following proof is presented in a way different from the original paper [5]. It fully uses the language of
differential equations, echoing the proposal in [8]. It avoids to discuss any derivatives along the propagation
of (discretized) deep neural networks. In [8, Section 1.1], this problem was also briefly discussed in the
language of functional derivatives.

2.3.1 Proof of Theorem 2.3
By direct computation,

∂θjL
(
z(T, θ)

)
=

∑
i

∇iL
(
z(T, θ)

)∂zi(T, θ)
∂θj

. (2.7)

Therefore, we need to compute ∂zi(T,θ)
∂θj

. Let us take derivative in (2.2) with respect to θj ,

d2z(t, θ)

dt dθj
= ∂θjf

(
z(t, θ), t, θ

)
+∇zf(z(t, θ), t, θ)

dz(t, θ)
dθj

.

Let us denote h(t, θ) = dz(t,θ)
dθj . Then one has

d
dth(t, θ) = ∂θjf

(
z(t, θ), t, θ

)
+∇zf(z(t, θ), t, θ)h(t, θ).

Let us denote the evolution/solution operator U(tf , ti) = e

∫ tf
ti

∂zf(z(s,θ),s,θ) ds
T where T is the chronological

time-ordering operator. Then one can show that

d
dt

(
U(T0, t)h(t, θ)

)
= U(T0, t)

(
−∇zf(z(t, θ), t, θ)

)
h(t, θ)
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+ U(T0, t)
(
∂θjf(z(t, θ), t, θ) +∇zf

(
z(t, θ), t, θ

)
h(t, θ)

)
= U(T0, t) ∂θjf(z(t, θ), t, θ).

By rewriting this in the integral form, one has

U(T0, t)h(t, θ)− U(T0, T0)h(T0, θ) =

∫ t

T0

U(T0, s) ∂θjf
(
z(s, θ), s, θ

)
.

Since we considered z(T0, θ) = z0 is fixed, thus h(T0, θ) = 0, and therefore

h(t, θ) =

∫ t

T0

U(t, s)∂θjf
(
z(s, θ), s, θ

)
ds.

One can also obtain this result by applying the Duhamel’s principle stated in Theorem 1.2.
By plugging this equation into (2.7), one has

∂θjL
(
z(T, θ)

)
=

∑
i

∇iL
(
z(T, θ)

)∂zi(T, θ)
∂θj

= ∇iL
(
z(T, θ)

)
· h(T, θ)

=

∫ T

T0

∇iL
(
z(T, θ)

)
·
(
U(T, s)∂θjf

(
z(s, θ), s, θ

))
ds.

Let us denote a(s)T = ∇L
(
z(T, θ)

)T
U(T, s) (an 1×Nd time-dependent row vector), then

∂θjL
(
z(T, θ)

)
=

∫ T

T0

a(s)T ∂θjf(z(s, θ), s, θ) ds.

If we adopt the matrix form,

(
∇θL(z(T, θ))

)T
=

∫ T

T0

a(s)T ∂θf(z(s, θ), s, θ) ds,

where ∂θf(z(s, θ), s, θ) =
[
∂θ1f(z(s, θ), s, θ) · · · ∂θNp

f(z(s, θ), s, θ)
]
∈ RNd×Np .

The dynamics of a(s) can be easily verified as follows:

d
dsa(s)

T = ∇L(z(T, θ))TU(T, s)(−∂zf(z(s, θ), s, θ)
)
= −a(s)T∂zf(z(s, θ), s, θ).

Or in a column form as in (2.5). The terminal condition of a can be easily checked, as well as (2.6).

Example 2.5. For Neural ODE in (2.2), if we consider a special family f(z, t, θ) = −iH(t, θ)z, where H(t, θ)
is a θ-parameterized time-dependent Hermitian operator, then for the forward process, one has

dz(s, θ)
dt = −iH(s, θ)z(s, θ).

For illustration, let us consider the following pedagogical example:

H(t, θ) =
ω

2
σZ + uθ(t)σX ≡

[
ω
2 uθ(t)

uθ(t)
ω
2

]

with the constraint ‖uθ(t)‖ ≤ umax and with initial condition z(0, θ) =

[
1
0

]
. We want to find a control uθ

such that z(T, θ) ≈
[
0
1

]
as much as possible. We choose ω = 1, umax = 2, and parameterize the uθ via

fully-connected neural network. The training results for T = 5 and T = 8 are visualized in Figure below.
For the case T = 8, the final target state is almost identical to the target state (up to a constant rescaling)
with Fidelity as high as 0.999.
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(a) T = 5, Fidelity of final state is 0.729
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(b) T = 8, Fidelity of final state is 0.999

Figure 2.1: Training result for Example 2.5. Fidelity measures the similarity between the final state z(T, θ)
and the target state. If the number of Fidelity is close to 1, it means the similarity is very high and the
control is very efficient.

2.4 Neural SDEs
Lastly, we will discuss how to work on backpropagation for an SDE. We will mainly focus on the most
fundamental mathematical facts without getting deep into various applications. In this section, we focus on
the strong solution of SDE. The following notes is prepared partially based on [17]. In order to extend the
backpropagation (adjoint equation) from ODEs to SDEs, it is easier to work with the Stratonovich SDE.
For the Itô SDE, one may convert it into Stratonovich SDE by Theorem 1.11, and then apply the following
procedures.

In the adjoint equation of ODEs, one needs to run dynamics backwardly. The first result below is to show
how one can reverse the dynamics of Stratonovich SDE, provided that one is given access to the Brownian
motion paths.

Lemma 2.6 (Reverse of Stratonovich SDE). Suppose
{
X(t)

}
t∈[0,T ]

satisfies the Stratonovich SDE in (1.8)
(also copied below herein):

dX(t) = b
(
X(t), t

)
dt+ σ

(
X(t), t

)
◦ dB(t).

Let X̃(t) := X(T − t), then X̃ satisfies the following Stratonovich integral

dX̃(t) = −b
(
X̃(t), T − t

)
dt+ σ

(
X̃(t), T − t

)
◦ dB(T − t). (2.8)

A direct proof will be provided in § 2.4.2.
Similar to Theorem 2.3 for Neural ODEs, one can show the following:

Theorem 2.7 (Gradient estimates for neural SDE; see also [17]). Suppose that the initial time is T0 and
the final time is T . Suppose that X(t, θ) follows the SDE (2.3) (also copied below herein)

dX(t, θ) = b
(
X(t, θ), t, θ

)
dt+ σ

(
X(t, θ), t, θ

)
◦ dB(t), X(T0, θ) = x0 is fixed. (2.9)

Suppose that L(·), b(·, ·, ·), σ(·, ·, ·) are continuously differentiable. For simplicity, let us consider the case
dimension Nd = 1. Then∇θL

(
X(T, θ)

)
=

∫ T

T0

a(s)∇θb
(
X(s, θ), s, θ

)
ds+ a(s)∇θσ

(
X(s, θ), s, θ

)
◦ dB(s),

da (s) = −a(s)∂xb
(
X(s, θ), s, θ

)
ds− a(s)∂xσ

(
X(s, θ), s, θ

)
◦ dB(s).

(2.10)

Alternatively, one could compute ∇θL
(
X(T, θ)

)
via running the following system of SDEs for time s ∈ [T0, T ],{

dy(s) = −a(s)∇θb
(
X(s, θ), s, θ

)
ds− a(s)∇θσ

(
X(s, θ), s, θ

)
◦ dB(s), y(T ) = 0Np

da (s) = −a(s)∂xb
(
X(s, θ), s, θ

)
ds− a(s)∂xσ

(
X(s, θ), s, θ

)
◦ dB(s), a(T ) = L′(X(T, θ)

) (2.11)
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The output y(T0) = ∇θL
(
X(T, θ)

)
.

Exercise 2.8. Generalize Theorem 2.7 to a general dimension Nd.

2.4.1 Proof of Theorem 2.7
The proof is essentially the same as that for Theorem 2.3. As mentioned above, for simplicity, we shall only
consider the 1D case. By direct computation,

∂θjL
(
X(T, θ)

)
= L′(X(T, θ)

)∂X(T, θ)

∂θj
. (2.12)

Therefore, we need to compute ∂X(T,θ)
∂θj

. For the time being, let us fix j, denote h(t, θ) = dX(t,θ)
dθj , and let us

take derivative in (2.9) with respect to θj . Then

dh(t, θ) =
(
∂θj b

(
X(t, θ), t, θ

)
+ ∂xb

(
X(t, θ), t, θ)h(t, θ)

)
dt

+
(
∂θjσ

(
X(t, θ), t, θ

)
+ ∂xσ

(
X(t, θ), t, θ)h(t, θ)

)
◦ dB(t).

(2.13)

Since the path of Stratonovich SDE is reversible for any given Brownian motion path, let us denote the
evolution/solution operator U(sf , si) by the following: suppose we fix θ (and thus fix X(t, θ)), and then for
any h0, we define U(sf , si)h0 as the solution at time sf of the following SDE

dh̃(t) = ∂xb
(
X(t, θ), t, θ

)
h̃(t) dt+ ∂xσ

(
X(t, θ), t, θ

)
h̃(t) ◦ dB(t), h̃(si) = h0.

Lemma 2.9. For arbitrary si, sf ∈ [T0, T ], the evolution operator U(sf , si) has the following form:

U(sf , si) = exp
(∫ sf

si

∂xb
(
X(t, θ), t, θ

)
dt+ ∂xσ

(
X(t, θ), t, θ

)
◦ dB(t)

)
. (2.14)

A direct proof will be provided in § 2.4.2.
Remark. This result is essentially a time-dependent generalization of Exercise 1.15.

Lemma 2.10. For a fixed si and consider any t ∈ [T0, T ], then

dU(t, si) = ∂xb(X(t, θ), t, θ)U(t, si) dt+ ∂xσ(X(t, θ), t, θ)U(t, si) ◦ dB(t).

For a fixed sf , and consider any t ∈ [T0, T ], then

dU(sf , t) = −U(sf , t)∂xb
(
X(t, θ), t, θ

)
dt− U(sf , t)∂xσ

(
X(t, θ), t, θ

)
◦ dB(t).

Proof. The proof of Lemma 2.9 can be easily modified to prove the conclusion. A detailed proof is skipped.

Remark. This lemma resembles Lemma 1.1.
Then one can directly show that

d
(
U(T0, t)h(t, θ)

)
= U(T0, t)∂θj b

(
X(t, θ), t, θ

)
dt+ U(T0, t)∂θjσ

(
X(t, θ), t, θ

)
◦ dB(t).

By rewriting this in the integral form, one has

U(T0, t)h(t, θ)− h(T0, θ) =

∫ t

T0

U(T0, s) ∂θj b
(
X(s, θ), s, θ

)
ds+ U(T0, s)∂θjσ

(
X(s, θ), s, θ

)
◦ dB(s).

Since we considered X(T0, θ) = X0 is fixed, thus h(T0, θ) = 0, and therefore

h(t, θ) =

∫ t

T0

U(t, s)∂θj b
(
X(s, θ), s, θ

)
ds+ U(t, s)∂θjσ

(
X(s, θ), s, θ

)
◦ dB(s).
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By plugging this equation into (2.12), one has

∂θjL
(
z(T, θ)

)
= L′(X(T, θ)

)∂X(T, θ)

∂θj

= L′(X(T, θ)
)
h(T, θ)

=

∫ T

T0

L′(X(T, θ)
)(

U(T, s)∂θj b
(
X(s, θ), s, θ

)
ds+ U(T, s)∂θjσ

(
X(s, θ), s, θ

)
◦ dB(s)

)
.

Let us denote a(s) = L′(X(T, θ)
)
U(T, s), then

∂θjL
(
z(T, θ)

)
=

∫ T

T0

a(s)∂θj b
(
X(s, θ), s, θ

)
ds+ a(s)∂θjσ

(
X(s, θ), s, θ

)
◦ dB(s)

If we adopt the matrix form, we can obtain the formula of ∇θL
(
z(T, θ)

)
as in (2.10). The dynamics of a(s)

in (2.10) can be easily verified by Lemma 2.10.

2.4.2 Proof of lemmas
Proof of Lemma 2.6. Let us divide the time interval into N equally spaced grid points and let tk = k∆t
where ∆t = T/N .

X̃(tk+1)− X̃(tk)

=X(T − tk+1)−X(T − tk)

=− b
(
X(T − tk+1), T − tk+1

)
∆t−

σ
(
X(T − tk+1), T − tk+1

)
+ σ

(
X(T − tk), T − tk

)
2

(
B(T − tk)−B(T − tk+1)

)
+ o(∆t)

=− b
(
X̃(tk), T − tk

)
∆t+

σ
(
X̃(tk+1), T − tk+1

)
+ σ

(
X̃(tk), T − tk

)
2

(
B(T − tk+1)−B(T − tk)

)
+ o(∆t),

which leads into (2.8).

Proof of Lemma 2.9. For simplicity of notations, we shall suppress the dependence on θ. Let us consider an
arbitrary h0 and by definition,

U(sf +∆t, si)h0 − U(sf , si)h0

=U(sf +∆t, sf )U(sf , si)h0 − U(sf , si)h0 (Denote h̃(sf ) = U(sf , si)h0)

= ∂xb
(
X(sf ), sf

)
h̃(sf ) ∆t+

1

2

(
∂xσ(X(sf ), sf )h̃(sf ) + ∂xσ

(
X(sf +∆t), sf +∆t

)
h̃(sf +∆t)

)
∆B(sf ) + o(∆t)

=∂xb
(
X(sf ), sf

)
h̃(sf ) ∆t+

1

2

(
∂xσ

(
X(sf ), sf

)
h̃(sf ) + ∂xσ

(
X(sf +∆t), sf +∆t

)
h̃(sf )

)
∆B(sf )

+
1

2
∂xσ

(
X(sf +∆t), sf +∆t

)
∆B(sf )

(
h̃(sf +∆t)− h̃(sf )

)
+ o(∆t)

=∂xb
(
X(sf ), sf

)
h̃(sf ) ∆t+

1

2

(
∂xσ(X(sf ), sf ) + ∂xσ(X(sf +∆t), sf +∆t)

)
∆B(sf )h̃(sf )

+
1

2

(
∂xσ

(
X(sf ), sf

)
∆B(sf )

)2

h̃(sf ) + o(∆t).

Let us denote the expression on the right hand side of (2.14) as U to distinguish expressions:

U(sf +∆t, si)h0 − U(sf , si)h0

= exp
(
∂xb

(
X(sf ), sf

)
∆t+

1

2
∂xσ

(
X(sf ), sf

)
∆B(sf ) +

1

2
∂xσ

(
X(sf +∆t), sf +∆t

)
∆B(sf ) + o(∆t)

)
U(sf , si)h0
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− U(sf , si)h0

=
(
∂xb

(
X(sf ), sf

)
∆t+

1

2
∂xσ

(
X(sf ), sf

)
∆B(sf ) +

1

2
∂xσ

(
X(sf +∆t), sf +∆t

)
∆B(sf )

)
U(sf , si)h0

+
1

2

(
∂xσ

(
X(sf ), sf

)
∆B(sf )

)2

U(sf , si)h0 + o(∆t)

As the above two dynamics have the same discretization and match with each other, we can obtain (2.14)
as a limit.

2.5 Further Readings
Below we list a few related topics for possible exploration:

• [15] gave a more detailed discussion on the relation between control theory and deep learning in lecture
notes for a summer school at Peking University (2020).

• When the problem involves taking higher-order derivatives, e.g.,

min
θ

Ex g
(
∇xp(θ, x),∇(2)

x p(θ, x), · · · ,∇(k)
x p(θ, x)

)
,

and g is some non-linear non-negative function, then an efficient way to take derivatives becomes
important. An example is to solve PDEs using PINNs (cf. Example 1.21). For Laplacian operator,
the forward method can provide speed-up over backpropagation [16].

• The above results can be further generalized to Neural Jump Process, and Levy process. This is an
interesting topic for exploration on your own.



Chapter 3

Neural Dynamics for Generative
Problems: (I) Normalizing Flows

3.1 Background
Generative problem, in a mathematical way, means to generate samples according to a certain probability
measure pX (which could be extremely complex). Here we list two examples among many:

• Each black/white image (with n pixels) can be represented by a data point in Rn. A task in machine
learning is to find a way to generate samples according to pX , provided that one is given a certain
amount of data samples

{
xi

}N

i=1
. This is a reminiscent of the first type of data source, namely, data

directly coming from realistic problems.

• For N interacting particles in statistical physics with potential U , the equilibrium distribution (also
known as the Boltzmann distribution) takes the following form pX(x) = e−U(x)/Z where Z =

∫
e−U is

known as the partition function or normalization constant (depending on which research field that you
come from). One goal is to find a way to generate samples according to such a distribution, which could
enable the estimation of many physical quantities for equilibrium dynamics. This is a reminiscent of
the second type of data source: the data is not provided in general and needs to be generated artificially
in order to formulate the generative problem as a machine learning problem.

A widely studied tool for sample generation is normalizing flows. When normalizing flows have infinitely
many layers and for each layer, the update is infinitesimally small, the corresponding mathematical object
is simply ODEs, and also refers to as probability flow in some contexts. The following notes are prepared
mainly by referring to review papers [14, 23] and [4, Chapter 18]. This topic is also tightly connected to a
field called optimal transport theory; one may refer to e.g., [2, 33].

For this mini-course, we will only cover some basic concepts about normalizing flows and probability
flows, as well as a little from optimal transport theory. In this notes, we will not specifically distinguish the
notation of probability measures and probability densities.

3.2 Connection to Optimal Transport
As mentioned above, the goal is to find a way to generate samples according to a target measure pX . One
widely used approach is to find a mapping f such that f(Z) follows the target distribution pX . Designing a
function f to generate samples using f(Z) is a very classical idea, with enormous applications. For instance,
Box–Muller transform (a backend algorithm for generating normal random variables in our computers) uses
the following algorithm: generate two independent U1 and U2 following uniform distributions on (0, 1) and
then let

Z0 =
√
−2 ln(U1) cos(2πU2);

23
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Z1 =
√
−2 ln(U1) sin(2πU2).

Then (Z0, Z1) are independent standard normal random variables.1

The prior distribution pZ contains certain degree of freedom, but it is typically chosen as simple distri-
butions like uniform distributions or Gaussians. The mapping f is what we need to find. Such a mapping is
also well-known as the Monge map in some literatures, and this name dated back to the problem of finding
a shortest path to move a pile of sand into another pile of sand in 18th century.

In general, if we consider general probability measures (rather than probability densities), there are ex-
amples such that one cannot find such a mapping. For instance, let pZ(z) = δ0(z) (a Dirac delta distribution
at 0), and pX(x) = 1

2δ1(x)+
1
2δ−1(x) (half probability at 1 and half probability at −1). It is easy to see that

one cannot find such a mapping f . Of course, in real problems, life is not that tough and we have or we can
assume the existence of distributions, which has the following result.

Theorem 3.1 (Existence of Monge map [2, Theorem 2.3]). Suppose that the initial measure µZ ∈ P2(Rn)
is absolutely continuous with respect to Lebesgue measure, and µX ∈ P2(Rn), then there exists a Monge
map f such that µX = f#µZ . 2

Due to the above existential theorem, and also for many realistic problems, we can assume the existence
of probability densities, we shall stick with this setup from now on. Let us consider the 1D case.

Example 3.2 (1D case).

• Let us assume that the support of pX , pZ is simply R, which means their corresponding cumulative
probability density functions PX and PZ are strictly monotone functions and is invertible. Suppose
that f is monotone increasing, then

f(x) = P−1
X ◦ PZ(x) (3.1)

is a mapping that satisfies the condition. This can be easily checked: with such a choice

P
(
f(Z) ≤ a

)
=

∫
R
χ{

f(z)≤a
}pZ(z) dz =

∫
R
χ{

PZ(z)≤PX(a)
}pZ(z) dz = PX(a) = P (X ≤ a),

which verifies that f(Z) and X have the same distribution.

• Conversely, if one is given a monotone increasing and differentiable mapping f and the prior distribution
pZ , the probability density function of X := f(Z) can be computed

pX(x) = pZ
(
f−1(x)

)(
f−1

)′
(x).

The proof is straightforward by (3.1).

Such a result can be generalized to arbitrary dimensions. If f is invertible, we can similarly compute the
density of pX :

Theorem 3.3. Suppose the mapping f is invertible, and let X = f(Z), then

pX(x) = pZ
(
f−1(x)

) ∣∣Jf−1(x)
∣∣, Jf−1(x) := det

(
∇f−1(x)

)
, (3.2)

and we also have

pX
(
f(z)

)
|Jf (z)| = pZ

(
z
)
. (3.3)

1See https://en.wikipedia.org/wiki/Box%E2%80%93Muller_transform
2The notation P2(Rn) means the space of probability measures with finite second moment. The original statement of [2,

Theorem 2.3] contains a lot more interesting results, and we only selectively pick what we need.

https://en.wikipedia.org/wiki/Box%E2%80%93Muller_transform
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Proof. For an arbitrary test function ϕ ∈ C∞
c (Rn), we have∫

ϕ(x)pX(x) dx = E
[
ϕ(X)

]
= E

[
ϕ(f(Z))

]
=

∫
ϕ
(
f(z)

)
pZ(z) dz

=

∫
ϕ(x)pZ

(
f−1(x)

)∣∣Jf−1(x)
∣∣ dx.

Since ϕ is arbitrary, one has the above result. The second equation can be obtained similarly.

Remark. (Monge-Ampere equation). If pX = f#pZ , namely, (3.3) holds, and suppose that the mapping
f = ∇φ with φ being convex, then

det
(
∇2φ

)
pX

(
∇φ

)
= pZ . (3.4)

This is well-known as Monge-Ampere equation.

3.3 Normalizing Flows
The next task is how to design some architectures for us to learn such a mapping f .

3.3.1 General architecture
For normalizing flows, a core ingredient is to represent f as the composition of a sequence of mapping fi:

f(z) = fℓ ◦ fℓ−1 ◦ · · · ◦ f1(z),

in same way as deep neural networks. The second new ingredient is that if we also want to compute the
density of pX , we’d better require f to be invertible (cf Theorem 3.3), which becomes a requirement for each
fi to be invertible. If so,

f−1(x) = f−1
1 ◦ f−1

2 ◦ · · · f−1
ℓ (x).

z ≡ y0 y1 y2 · · · yℓ−1 x ≡ yℓ

f1

f−1
1

f2

f−1
2

fℓ

f−1
ℓ

Figure 3.1: A visualization of the forward and backward directions in normalizing flows

Then we can compute the density, which involves computing the gradient of a composition of two invertible
mapping.
Lemma 3.4. Suppose h1 and h2 are mappings, and h = h1 ◦ h2, then

det
(
∇h(x)

)
= det

(
∇h1

(
h2(x)

))
det

(
∇h2(x)

)
=⇒ Jh1◦h2

(x) = Jh1

(
h2(x)

)
Jh2

(x). (3.5)

Proof. By chain rules, ∇h(x) = ∇h1

(
h2(x)

)
∇h2(x), which immediately leads into the above result.

With such a result, one can show that

pX(x)
(3.2)
= pZ

(
f−1(x)

)∣∣Jf−1(x)
∣∣ (3.5)

= pZ
(
f−1(x)

)∣∣∣Jf−1
1

(y1)Jf−1
2

(y2) · · · Jf−1
ℓ

(x)
∣∣∣

= pZ
(
f−1(x)

) ∣∣∣∣∣
ℓ∏

i=1

Jf−1
i

(yi)

∣∣∣∣∣. (3.6)

We have just shown that with such a mapping f available, we can surely generate samples according to
X = f(Z) and also compute the density of pX .
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The remaining questions become:

(Q1) how to find a parameterized invertible mapping?

(Q2) how to design such a mapping such that the determinant of Jacobian is easy to compute?

(Q3) the universality (expressiveness) and efficiency of such a design?

3.3.2 Coupling flow and RealNVP
A widely used idea to design invertible mapping is through the coupling flows. For a n dimensional problem,
x = (x1, x2) ∈ Rd × Rn−d, one defines such a mapping:{

y(1) = h
(
x(1), θ(x(2))

)
;

y(2) = x(2).

where h(·, θ) is an invertible function. The inverse is simply{
y(1) = h−1

(
y(1), θ(y(2))

)
;

x(2) = y(2).

Namely, we fix certain coordinates as conditioner, and we only update other coordinates, a bit like coordinate-
wise gradient descent idea.

A widely used example is RealNVP [7] (standing for real-valued non-volume preserving):

f(x) =
{
y(1) = x(1) � exp

(
s(x(2))

)
+ t(x(2));

y(2) = x(2).

s, t : Rn−d × Rd are parameterized functions, and � is the element-wise product. The inverse function is

f(y)−1 =

{
x(1) =

(
y(1) − t(y(2))

)
� exp

(
− s(y(2))

)
;

x(2) = y(2).

In such a formalism, one does not require s, t to be invertible. The Jacobian

Jf(x) = det
(
∇f(x)

)
= exp

(∑
j

s(x(2))j
)

In order for the component x(2) to also evolve, one can change the partition (a collection of coordinates that
remain unchanged) above so that all coordinates are overall “coupled”.

3.3.3 Loss functions for learning without data
Given a parameterized density Xθ ∼ pX,θ = fθ#pZ , we want to match this with X ∼ pX . Therefore, our
optimization problem can be setup as

min
θ

Dist
(
fθ#pZ , pX

)
.

A commonly used “metric” is KL divergence, which leads into

min
θ

DKL
(
fθ#pZ , pX

)
=

∫
pX,θ(x) log pX,θ(x)− pX,θ(x) log pX(x) dx

= EXθ∼fθ(Z)

[
log pX,θ

(
Xθ

)
− log pX

(
Xθ

)]
.
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Suppose we already know that our target distribution has a potential U with pX(x) = e−U(x)/Z, then the
optimization problem becomes

min
θ

EXθ∼fθ(Z)

[
log pX,θ

(
Xθ

)
+ U

(
Xθ

)]
. (3.7)

The term involving Z can be dropped out as it is independent of θ. This formalism can help to learn a
target distribution without given data. To discretize the above expectation, we can take samples

min
θ

1

M

M∑
i=1

log pX,θ

(
fθ(zi)

)
+ U

(
fθ(zi)

)
,

where zi are i.i.d. samples drawn from the base distribution pZ .

3.3.4 Loss functions for learning with data
Another possibility is to use

min
θ

DKL
(
pX , fθ#pZ

)
=

∫
pX log

(
pX

)
− pX log

(
pX,θ

)
.

As pX is the true distribution, independent of θ, this is equivalent to estimate

max
θ

EX∼pX

[
log

(
pX,θ(X)

)]
.

Suppose we are given data samples
{
xi

}N

i=1
rather than the potential function, we can use

max
θ

1

N

N∑
i=1

log pX,θ(xi)
(3.2)
=

1

N

N∑
i=1

log pZ
(
f−1
θ (xi)

)
+ log

∣∣∣Jf−1
θ

(xi)
∣∣∣.

Then everything is computable. This formalism can also be interpreted as maximizing the log-likelihood for
data conditioned on the model parameter θ.

3.4 ODE Flows
As mentioned above, the NFs structure can help to more easily compute the density functions. When
the layers become infinitely deep, the normalizing flow structure can turn into an ODE system or say a
“continuous normalizing flow”. Moreover, ODE is naturally time-reversible (meaning invertible flow map).

3.4.1 Evolution of log-density function
More specifically, suppose we consider the ODE:

d
dY (t) = F

(
Y (t), t

)
, Y (0) is random.

Though the initial condition is random, each trajectory is still deterministic. The time-t flow map y 7→ ϕ(y, t)
also solves the ODE

d
dtϕ(y, t) = F

(
ϕ(y, t), t

)
, ϕ(y, 0) = y.

The probability density function of Y (t), denoted as p(y, t), solves the following PDE

∂tp(y, t)
(1.18)
= −∇y ·

(
F (y, t)p(y, t)

)
= −

(
∇y · F (y, t)

)
p(y, t)− F (y, t) · ∇yp(y, t). (3.8)



CHAPTER 3. NEURAL DYNAMICS FOR GENERATIVE PROBLEMS: (I) NORMALIZING FLOWS28

This can be obtained by the formula of Fokker-Planck equation in (1.18) as ODE can be regarded as a special
SDE without diffusion coefficient. Then by the chain rules, the log-density function can be computed as
follows:

d
dt log p

(
Y (t), t

)
=

∂tp
(
Y (t), t

)
+∇yp

(
Y (t), t

)
· dY (t)

dt
p
(
Y (t), t

)
(3.8)
=

−(∇y · F )
(
Y (t), t

)
p
(
Y (t), t

)
− F

(
Y (t), t

)
· ∇yp

(
Y (t), t

)
+∇yp

(
Y (t), t

)
· F

(
Y (t), t

)
p
(
Y (t), t

)
= −(∇y · F )

(
Y (t), t

)
.

Hence,

log p
(
Y (T ), T

)
− log p

(
Y (0), 0

)
=

∫ T

0

−
(
∇y · F

)(
Y (t), t

)
dt. (3.9)

3.4.2 Connection to (discrete) normalizing flows
Suppose the initial distribution is pZ , we have

p
(
Y (T ), T

)
= pZ

(
Y (0)

)
exp

(
−

∫ T

0

(
∇y · F

)(
Y (t), t

)
dt
)
.

If we choose grid points 0 = t0 < t1 < · · · < tℓ = T , grid size ∆t = T
ℓ and suppose that ℓ � 1. If we

approximately choose f−1
i (x) = 1− F (x, ti)∆t+O

(
∆t2

)
and let mapping f(x) = fℓ ◦ fℓ−1 ◦ · · · ◦ f1(x) and

denote ŷk = fk ◦ fk−1 · · · f1(x) for k = 1, 2, · · · , ℓ. Then

det
(
∇f−1

i (x)
)
= det

(
I −∇F (x, ti)∆t

)
+O

(
∆t2

)
= 1− tr

(
∇F (x, ti)

)
∆t+O

(
∆t2

)
= exp

(
− tr

(
∇F (x, ti)

)
∆t

)
+O

(
∆t2

)
,

and the last equation becomes

p
(
ŷℓ, T

)
= pZ

(
ŷ0
) ℓ∏
i=1

exp
(
−∆t(∇y · F )(ŷi, ti)

)
+O(∆t)

= pZ
(
ŷ0
) ℓ∏
i=1

det
(
∇f−1

i (ŷi)
)
+O(∆t).

This reduces to (3.6) for the discrete-time case. In the above, we used a fact that det
(
I+ ϵA

)
= 1+ tr(A)ϵ+

O
(
ϵ2
)

for any square matrix A and small enough ϵ.

3.4.3 Training of ODE flow for learning tasks without data
Suppose we consider the problem of learning probability distribution without data. Then similar to (3.7),
we need to optimize:

min
θ

E
[

log p
(
Y (T, θ), T, θ

)
+ U

(
Y (T, θ)

)]
.

By (3.9), if we denote

d
dtY (t, θ) = F

(
Y (t, θ), t, θ

)
, Y (0, θ) = Y0;

d
dtJ(t, θ) = −∇y · F

(
Y (t, θ), t, θ

)
, J(0, θ) = log pZ

(
Y (0)

)
,

(3.10)
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and denote Y = (Y, J) ∈ Rn+1, the optimization problem above can be written as

min
θ

E
[
V
(
Y (T, θ)

)]
, V (Y ) := Y n+1 + U(Y 1:n)

Finding an optimal parameter θ for the augmented dynamics (3.10) with terminal loss V is essentially the
task for neural ODEs which had been revisited in Chapter 2.3.

3.4.4 Training of ODE flow for learning tasks with data
Similar to the discrete-time case, one can train the ODE flow with log-likelihood as loss (or equivalently the
KL divergence as discussed above):

max
θ

EX∼pX

[
log p(X,T, θ)

]
=

1

N

N∑
i=1

log p(xi, T, θ).

Using (3.9), we could simply solve the following system of ODEs:

d
dtY (t, θ) = F

(
Y (t, θ), t, θ

)
, Y (T, θ) = xi;

d
dtJ(t, θ) = −

(
∇y · F )

(
Y (t, θ), t

)
, J(0, θ) = log pZ

(
Y (0, θ)

)
.

This can also be formulated as a standard neural ODE problem with a little effort.

3.5 Further Readings
Below we list a few related topics for reading and possible exploration:

• Boltzmann Generator [22]: use normalizing flows to sample from the Boltzmann distributions of many-
body particles.

• The Benamou-Brenier formalism [3] (or say a continuous-time dynamical perspective) in optimal trans-
port, which connects to the ODE flow formalism.

• We only cover a few narrow aspects of normalizing flows. More can be found in review papers [14, 23]
and references therein, as well as [4, Chapter 18], e.g., we haven’t covered auto-regressive flow above.

• We haven’t discussed the estimation of the complexity of computing Jacobian, which is left as exercises;
see e.g., [4, Chapter 18].



Chapter 4

Langevin Sampling

The open system studies the interaction of the system with its environment. As the environment could have
a huge amount of degrees of freedom (e.g., a large amount of water molecules), we won’t want to, and we
are unable to directly study all degrees of freedom of the environment. Therefore, this challenge leads into
a topic called open system. For instance, in the example of the discovery of Brownian motion, the pollen
particle is the system that we want to study, and all water molecules form an environment. The study of
pollen particle without modeling all water molecules is a typical example for the study of open classical
systems.

Among many models, Langevin dynamics is an important dynamical equation to characterize the in-
teraction of system and environment, with applications in various research fields, in particular with recent
applications in machine learning. Later we will show why compared with normalizing flows and ODE flows
above (cf. Chp. 3.3.3), Langevin dynamics can be used as a sampling algorithm without any training. The
study of Langevin dynamics and Langevin sampling is a very large topic and we will only very concisely
touch the very basic concepts only.

4.1 Generalized Langevin Equation and Underdamped Langevin
Dynamics

For those who are interested in its origin in physics, one may refer to classical papers [20, 34] in last 60-
70s or [24, Chapter 8] for the introduction of deriving Langevin dynamics in open classical systems. The
Generalized Langevin equation (GLE) takes the following form [34, Eq. (22)]

Q̇(t) = P (t)

Ṗ (t) = −∇U
(
Q(t)

)
−

∫ t

0

dt′ ζ(t′)P (t− t′) + F(t)

where U is the potential function, ζ is the correlation function, the noise F(t) has mean zero and correlation
〈F(t)F(t′)〉 = kBTζ(t− t′), where kB is the Boltzmann constant, T is the temperature.

Suppose that the correlation function decays sufficiently fast, e.g., ζ(t) ≈ 2γ e−t2/(2δ2)
√
2πδ2

(δ � 1) is approx-
imately a delta measure, then we may model the above dynamics “equivalently” using the following SDE,
also known as the underdamped Langevin dynamics:

dQ (t) = P (t) dt
dP (t) = −∇U

(
Q(t)

)
dt− γP (t) dt+

√
2γβ−1 dW (t),

(4.1)

where γ > 0 represents the damping coefficient, and β = 1
kBT means the inverse temperature. When the

temperature T is large, β−1 � 1, and the fluctuation due to Brownian motion is more significant; when the
temperature T is very low, β−1 � 1, and the influence of random noise due to environment is small. Hence,
at least, the role of β is indeed compatible with thermodynamics.

30
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For underdamped Langevin dynamics (4.1), the convergence analysis of the relevant Fokker-Planck equa-
tion, the limiting behavior, as well as the performances of various numerical discretization schemes have
been active research topics in the last decade and there are still open questions along this line.

4.2 Over-damped Langevin Sampling
For simplicity, let us consider over-damped Langevin dynamics instead: 1

dX(t) = −∇U
(
X(t)

)
dt+

√
2β−1 dW (t). (4.2)

The derivation of this SDE from underdamped Langevin dynamics (4.1) in the limit of γ → ∞ could be
found in e.g., [24, Chapter 6.5]. This is perhaps also where the name “overdamped” comes from.

The Fokker-Planck equation of this SDE is the following:

∂tp(x, t)
(1.18)
= ∇ ·

(
∇U(x)p(x, t)

)
+ β−1∆p(x, t). (4.3)

It can be easily checked that

p∞(x) ∝ e−βU(x),

is a stationary solution to the above PDE.
Remark. Of course, to reach such an equilibrium, one may use time-dependent potential U(·, t). Designing
a dynamics (namely, designing drift and diffusion terms) so that it reaches a certain equilibrium faster is a
topic of interest for research.

Due to such a convergence behavior, one may design a numerical scheme to simulate the above SDE
to time T where T � 1, so that p(·, T ) ≈ p∞. If so, then X(T ) are samples approximately from p∞. To
simulate the SDE, one can use a discrete time-step ∆t = T

N where ∆t � 1, and discretize the SDE using
Euler-Maruyama method:

X̂k+1 = X̂k −∇U(X̂k) ∆t+
√
2β−1∆t N (0, 1), (4.4)

where N (0, 1) are standard random variables, e.g., generated by Box–Muller transform discussed in Chap-
ter 3.2. Fortunately, most numerical packages have already provided reliable interface to a generator of
normal random variables, like numpy in Python.

In practice, we don’t have to re-draw samples every time. If one wants to estimate the expected value in
the following form ∫

Rn

f(x) p∞(x) dx = lim
T→∞

1

T

∫ T

0

f
(
X(t)

)
dt

where the equality holds due to ergodicity. One may further approximate the integral via

lim
T→∞

1

T

∫ T

0

f
(
X(t)

)
dt ≈ 1

T

∫ T

0

f
(
X(t)

)
dt ≈ 1

N

N∑
i=1

f(X̂k). (4.5)

where the time step is ∆t = T
N is supposed to be small.

Langevin dynamics, though originated from statistical physics, can be used for other statistical problems,
and machine learning problems. A common task is that one wants to sample from a certain distribution q,
one may define U(x) := −β−1 log q(x) and thus one can utilize such a dynamics above (4.2) to sample from
q (provided that one is given an expression of q up to some multiplicative prefactor).

1the notation of the position Q has been changed to X below
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4.3 Further Readings
• [24]: Chapter 6 and Chapter 8 provide a detailed mathematical description of Langevin dynamics and

its Fokker-Planck equations.

• A more comprehensive introduction of this sampling topic can be found in [6].

• Algorithmic problem: Due to the hardness for Langevin dynamics to converge when a tall energy
barrier exists under low temperature β � 1, it is still an active research topic to explore more efficient
algorithms.



Chapter 5

Neural Dynamics for Generative
Problems: (II) Diffusion Models

We will revisit the following problem:

Problem: given available data {xi}Ni=1 of an unknown pX , how can we train a dynamical system to learn
or generate samples from the distribution pX , utilizing a base distribution (or say prior distribution) pZ?

X ∼ pX Z ∼ pZ

time t = 0 time t = T

adding noise (a process to choose a prior); see (5.2) and (5.6)

denoising (a process to learn); see (5.3) and (5.9)

Figure 5.1: A visualization of the forward and backward directions in diffusion models

This is a problem that we have discussed in normalizing flows in Chapter 3. For normalizing flows, when
one designs a structure and the loss function, only information for the prior distribution pZ and the target
distribution pX are mainly counted. There are certain redundancy for the trajectory in the middle stages.
For instance, for each trajectory in the probability space p(t, ·), one can find a velocity field v(x, t) such that

∂tp(x, t) = −∇x ·
(
v(x, t)p(x, t)

)
(5.1)

This can be realized e.g., via an ODE

d
dtX(t) = v

(
X(t), t

)
.

As there are infinitely many possible trajectories, this degree of freedom may also come with the difficulty
of training. The direct continuous normalizing flows (or say ODE flows) using the control perspective tastes
a bit like a shooting method for ODEs.

One may impose additional criterions like

• minimizing the action of path (similar to Benamou-Brenier formalism in optimal transport [3]);

• to specify a certain “Fixed” trajectory in the space of probability distributions P2(Rn), which is perhaps
a reminiscent of the annealing idea (e.g., [21]), a very powerful idea for many computational tasks
beyond what has been described here.

33
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Diffusion-based models and other variants mostly take the second approach (if not all). The dynamical
system can of course be (a) deterministic mapping; (b) Markov Chains; (c) ODE flows; (d) SDEs. To give
some background, in the earlier stage of developing diffusion models, the process of generating samples from
pX utilized discrete-time Markov process [28, 30, 10]. Later, an SDE-based formulation was available in [31]
which unifies previous Markov process based models. Not too much time later, diffusion-like models based
on ODEs become a popular alternatives, and frameworks like flow-matching [18] and rectified flow [19] are
introduced; these frameworks can be further unified within stochastic interpolants [1]. More recently, for the
consideration of faster generation, the advantage of discrete mapping becomes more appreciated and e.g.,
consistency model [29] was introduced partially under this background. So far, the diffusion-based models
and many variants have become a powerful tool in data synthesis, e.g., text-to-image generation and et al.

In the following notes, for simplicity, we will not follow historical development, and one may check the
review papers for an overarching understanding of this field and many other important works. Due to the
time limitation in this mini-course, we will only cover the most basic mathematical objects behind these
models and only focus on continuous-time dynamics.

5.1 SDE-based Diffusion Models
Step 1: specify the path

In the following, we will adopt the continuous-time formalism based on [31] for easier illustration. In this
case, we consider the following OU process

dX(t) = b(X(t)) dt+
√
2 dWt, b(x) = −x. (5.2)

This is a very special Langevin dynamics with potential U(x) = |x|2/2. Therefore, the limiting distribution
is p∞ = N (0, In) (see Exercise 1.18). With a time T large enough, we know that p(·, T ) ≈ N(0, In) := pZ .
For the time being, let us worry not the gap between pZ and p(·, T ). What this process really did is to define
a path in the space of probability distributions. The associated Fokker-Planck equation is

∂tp(x, t) = −∇ ·
(
b(x)p(x, t)

)
+∆p(x, t),

and if we use p̃(x, t) := p(x, T − t) for the time-reversed process, then clearly

∂tp̃(x, t) = ∇ · (b(x)p̃(x, t))−∆p̃(x, t).

Step 2: specify the reverse-time SDE

In order to reverse the process for data generation (driving a random variable following pZ to a random
variable following pX), it is natural to image that one also uses an SDE

dY (t) = A(Y (t), t) dt+
√
2h dWt, Y (0) ∼ p(·, T ) ≈ pZ . (5.3)

Since this SDE also need to follow the same path (in the sense of associated probability distributions), we
have

∇ · (b(x)p̃(x, t))−∆p̃(x, t) = ∂tp̃(x, t) = −∇ ·
(
A(x, t)p̃(x, t)

)
+ h ∆p̃(x, t).

By matching terms, we need

b(x)p̃(x, t)−∇p̃(x, t) = −A(x, t)p̃(x, t) + h∇p̃(x, t)

which leads into

A(x, t) = −b(x) + (h+ 1)
∇p̃(x, t)

p̃(x, t)
= −b(x) + (h+ 1)∇ log p̃(x, t).
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Step 3: Training of the score function

Therefore, the unknown part is ∇ log p(x, t), which is also known as the score function. A natural idea is to
parameterize sθ(x, t) ≈ ∇ log p(x, t) and use the mean-square error

min
θ

LSDE(θ) :=

∫ T

0

∫
Rn

‖∇ log p(x, t)− sθ(x, t)‖2 p(x, t) dt

=

∫ T

0

∫
Rn

‖sθ(x, t)‖2 p(x, t)− 2sθ(x, t) · ∇x log p(x, t) p(x, t) dx dt+ C

=

∫ T

0

∫
Rn

‖sθ(x, t)‖2 p(x, t)− 2sθ(x, t) · ∇xp(x, t) dx dt+ C

=

∫ T

0

dt
∫
Rn

dx
∫
Rn

dy ‖sθ(x, t)‖2 P (x, t|y, 0)p(y, 0)− 2sθ(x, t) · ∇xP (x, t|y, 0)p(y, 0) + C

=

∫ T

0

dt EX0∼p(·,0)EXt∼P (·,t|X0,0)

[
‖sθ(Xt, t)‖2 − 2sθ(Xt, t) · ∇x logP (Xt, t | X0, 0)

]
+ C

=

∫ T

0

dt EX0∼p(·,0)EXt∼P (·,t|X0,0)

[
‖sθ(Xt, t)−∇x logP (Xt, t | X0, 0)‖2

]
+ C

where “+C” means some terms independent of the parameter θ. Therefore, we only need to solve

min
θ

∫ T

0

dt EX0∼p(·,0)EXt∼P (·,t|X0,0)

[
‖sθ(Xt, t)−∇x logP (Xt, t | X0, 0)‖2

]
, (5.4)

where the transition probability for OU process is easy to obtain: for a fixed y, the conditional probability
P (x, t|y, 0) follows the normal random variable with mean e−ty and covariance matrix c(t)In and the scalar-
valued function

c(t) = 2

∫ t

0

e−2(t−s) ds.

see Example 1.13; hence,

P (x, t|y, 0) = 1√
2πc(t)

n exp
(
− ‖x− e−ty‖2

2c(t)

)
=⇒ ∇x logP (x, t|y, 0) = −x− e−ty

c(t)
,

which is easily computable.

Summary

One can train a parameterized function (x, t) ∈ Rn × R → sθ(x, t) ∈ Rn using the loss function in (5.4) and
then use the SDE (5.3) to generate samples, also copied below

dY (t) = Aθ(Y (t), t) dt+
√
2h dWt, Y (0) ∼ p(·, T ) ≈ pZ

Aθ(x, t) = −b(x) + (h+ 1)sθ(x, T − t).
(5.5)

When we pick h = 0 in (5.5), then the backward dynamics is simply an ODE.

5.2 ODE-based Models
Specify the loss and the ODE

Suppose that the probability distribution at time t = T is (or very close to) the prior distribution pZ (e.g.,
chosen as pZ = N (0, In) for simplicity), and at time t = 0, it is the target distribution pX . As discussed
earlier, there are infinitely many paths in the probability space to connect them, let us say a smooth path
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{
p(·, t)}Tt=0 in the functional space P2(Rn), then there exists a velocity field v satisfying (5.1). One only

needs to parameterize the velocity field using (x, t) 7→ vθ(x, t) so that

min
θ

LODE(θ) :=

∫ T

0

∫
Rn

‖v(x, t)− vθ(x, t)‖2 p(x, t) dt

=

∫ T

0

E
[∥∥v(X(t), t

)
− vθ

(
X(t), t

)∥∥2]
where X(t) ∼ p(·, t). Therefore, the next task becomes to find some examples of such X(t) and also v

(
X(t), t

)
is easily computable.

Specify the path

A widely used example is the following, studied in e.g., [18, 19, 1]:

X(t) = α(t)X + β(t)Z (5.6)

where X ∼ pX and Z ∼ pZ , and α(0) = 1, α(T ) = 0, β(0) = 0, β(T ) = 1 are used to satisfy terminal
conditions. It has been shown in [1] that:

Lemma 5.1 ([1, Theorem 2.6]). For (5.6), let p(·, t) be the associated probability distributions and thus
specifies the velocity field v(·, t) to satisfy (5.1). Then

v(x, t) = E
[
Ẋ(t)|X(t) = x] ≡ E

[
α̇(t)X + β̇(t)Z | X(t) = x]. (5.7)

Proof. For any test function ϕ ∈ C∞
c (Rn),

d
dtE[ϕ

(
X(t)

)
] = E

[
∇ϕ

(
X(t)

)
·
(
α̇(t)X + β̇(t)Z

)]
and in the weak form

d
dtE[ϕ

(
X(t)

)
] =

d
dt

∫
ϕ(x)p(x, t) dx =

∫
ϕ(x)∂tp(x, t) dx

= −
∫

ϕ(x)∇ ·
(
v(x, t)p(x, t)

)
dx =

∫
∇ϕ(x)v(x, t)p(x, t) dx

= E
[
∇ϕ(X(t))v(X(t), t)

]
Since the test function ϕ can be arbitrary, this proves (5.7).

Therefore, one can write the loss function as

LODE(θ) =

∫ T

0

E
[∥∥vθ(X(t), t

)∥∥2 − 2
〈
v
(
X(t), t

)
, vθ

(
X(t), t

)〉]
+ C

=

∫ T

0

E
[∥∥vθ(X(t), t

)∥∥2]− 2 E
[〈

v
(
X(t), t

)
, vθ

(
X(t), t

)〉]
+ C

=

∫ T

0

E
[∥∥vθ(X(t), t

)∥∥2]− 2 E

[
E
[〈

v
(
X(t), t

)
, vθ

(
X(t), t

)〉
| X(t)

]]
+ C

=

∫ T

0

E
[∥∥vθ(X(t), t

)∥∥2]− 2 E

[
E
[〈

α̇(t)X + β̇(t)Z, vθ
(
X(t), t

)〉
| X(t)

]]
+ C

=

∫ T

0

E
[∥∥vθ(X(t), t

)∥∥2]− 2 E
[〈

α̇(t)X + β̇(t)Z, vθ
(
X(t), t

)〉]
+ C

=

∫ T

0

E
[∥∥∥vθ(X(t), t

)
− (α̇(t)X + β̇(t)Z)

∥∥∥2]+ C.
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Summary

Therefore, one can solve the following optimization problem

min
θ

∫ T

0

EX∼pX ,Z∼pZ

[∥∥∥vθ(X(t), t
)
− (α̇(t)X + β̇(t)Z)

∥∥∥2], (5.8)

and then simulate the following ODE systems (with time-already reversed):

d
dtY (t) = −vθ

(
Y (t), T − t

)
Y (0) ∼ pZ , (5.9)

for the data generation using the output Y (T ).

5.3 Further Readings
• [4, Chapter 20]: a textbook style introduction to this topic.

• Classifier-free Diffusion Guidance [11]: generating samples conditioned on certain label (or say class)
information, which leads into the application like text-to-image generation.

• Stochastic Interpolants [1]: a very unified framework of many mathematical models.

• Consistency Models [29]: provide a one-shot generation (aka fast) for a data generation trajectory.
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Appendix A

Erratum (which has been corrected)

• A missing argument (r) inside the Theorem (1.2).

• The function f in the original version really means the loss function L inside Section 1.4.3 SGD.

• Two typos inside Section 2.1 for the output state.

• The normalizing constant has been changed to Z to avoid notation conflicts.
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