import numpy as np
import copy
import matplotlib.pyplot as plt
from IPython.display import Math, display
np.set_printoptions(precision=4, suppress=True)
def vec_to_str(vec):
return "[{:7.4f}, {:7.4f}, {:7.4f}]".format(vec[0], vec[1], vec[2])
def power_method(A, N, u, v, print_idx_list=[], check_eig="max", ε=1.0e-3, exact_value=None):
approx_u = []
approx_eig = []
approx_eig_Rayleigh = []
for k in range(1, N+1):
v = np.matmul(A, u)
largest_abs_value = max(v, key=abs)
u = v / largest_abs_value
approx_eig.append(largest_abs_value)
approx_u.append(u)
approx_eig_Rayleigh.append(np.dot(u, np.matmul(A,u))/np.dot(u,u))
if k in print_idx_list:
print("k = {:2d}, u = [{:7.4f} {:7.4f} {:7.4f}]".format(k,u[0],u[1],u[2]))
print("{:.4f} {:.4f}".format(approx_eig[-1], approx_eig_Rayleigh[-1]))
if check_eig == "max":
# 通过max计算的特征值来判断是否结束迭代
if k >= 2 and np.abs(approx_eig[-1] - approx_eig[-2]) < ε:
break
elif check_eig == "Rayleigh":
# 通过对Rayleigh商法计算得到特征值,判断是否结束迭代
if k >= 2 and np.abs(approx_eig_Rayleigh[-1] - approx_eig_Rayleigh[-2]) < ε:
break
# 如果有参考值,我们可以画特征值近似如何收敛至真解。
if exact_value != None:
plt.figure(figsize=(8,4))
plt.subplot(1,2,1)
plt.plot(approx_eig, 'ko--', label="Max approx")
plt.plot(approx_eig_Rayleigh, 'rx--', label="Rayleigh approx")
plt.plot(exact_value*np.ones(len(approx_eig)), label="exact")
plt.legend(fontsize=12)
plt.xlabel("Iteration N",fontsize=12)
plt.title("Approx. Eig",fontsize=14)
plt.subplot(1,2,2)
plt.plot(np.abs(approx_eig - exact_value), 'ko--', label="Max approx")
plt.plot(np.abs(approx_eig_Rayleigh - exact_value), 'rx--', label="Rayleigh approx")
plt.yscale("log")
plt.xlabel("Iteration N",fontsize=12)
plt.legend(fontsize=12)
plt.title("Error of Approx.",fontsize=14)
plt.tight_layout()
plt.show()
return approx_eig, approx_u, approx_eig_Rayleigh, u, v
A = np.array([[7.0, 3.0, -2.0],[3.0, 4.0, -1.0], [-2.0, -1.0, 3.0]])
eigv, eigvec = np.linalg.eig(A)
print("特征值为 = " + vec_to_str(eigv))
print()
exact_value = max(eigv, key=abs)
print("主特征值的准确值 = {:.4f}\n".format(exact_value))
for col in range(3):
c = max(eigvec[:,col], key=abs)
eigvec[:,col] /= c
print("λ = {:.4f} 对应的特征向量为 ".format(eigv[col]) + vec_to_str(eigvec[:,col]))
特征值为 = [ 9.6056, 2.0000, 2.3944] 主特征值的准确值 = 9.6056 λ = 9.6056 对应的特征向量为 [ 1.0000, 0.6056, -0.3944] λ = 2.0000 对应的特征向量为 [-1.0000, 1.0000, -1.0000] λ = 2.3944 对应的特征向量为 [-0.1315, 0.8685, 1.0000]
N = 10 # 迭代最大的次数
u = np.array([1,1,1])
v = copy.deepcopy(u)
print_idx_list = [1,2]
approx_eig, approx_u, approx_eig_Rayleigh, u, v = power_method(A, N, u, v,
print_idx_list=print_idx_list, exact_value=exact_value)
print("\n迭代结束后:")
print("u = {:s}".format(vec_to_str(u)))
print("{:.4f} {:.4f}".format(approx_eig[-1], approx_eig_Rayleigh[-1]))
k = 1, u = [ 1.0000 0.7500 0.0000] 8.0000 8.8000 k = 2, u = [ 1.0000 0.6486 -0.2973] 9.2500 9.5518
迭代结束后: u = [ 1.0000, 0.6056, -0.3944] 9.6056 9.6056
Ainv = np.linalg.inv(A)
eigv, eigvec = np.linalg.eig(Ainv)
exact_value = max(eigv, key=abs)
print("准确值 = {:.4f}\n".format(exact_value))
N = 40 # 迭代次数
u = np.array([1,1,1])
v = copy.deepcopy(u)
print_idx_list = [1,2]
approx_eig, approx_u, approx_eig_Rayleigh, u, v = power_method(Ainv, N, u, v,
print_idx_list=print_idx_list, check_eig="None", exact_value=exact_value)
print("\n迭代结束后:")
print("u = {:s}".format(vec_to_str(u)))
print("{:.4f} {:.4f}".format(approx_eig[-1], approx_eig_Rayleigh[-1]))
准确值 = 0.5000 k = 1, u = [ 0.3600 0.4400 1.0000] 0.5435 0.4268 k = 2, u = [ 0.2768 0.2806 1.0000] 0.4617 0.4407
迭代结束后: u = [ 0.9975, -0.9959, 1.0000] 0.4998 0.5000
def qr_algorithm(matrix, num_iterations=10, ε=1.0e-3):
"""
Perform QR algorithm to find eigenvalues and eigenvectors of a real symmetric matrix.
Parameters:
- matrix: The input real symmetric matrix.
- num_iterations: The number of iterations for the QR algorithm.
Returns:
- eigenvalues: An array of eigenvalues.
- eigenvectors: A matrix where each column is an eigenvector.
"""
# Initialize variables
size = matrix.shape[0]
eigenvectors = np.eye(size) # Start with the identity matrix
eigenvalues = np.diag(matrix)
eigenvalues_mat = np.zeros((size, num_iterations))
for i in range(num_iterations):
# QR factorization
q, r = np.linalg.qr(matrix)
# Update matrix with R * Q
matrix = np.matmul(r, q)
# Update eigenvectors
eigenvectors = np.matmul(eigenvectors, q)
eigenvalues_new = np.diag(matrix)
if np.linalg.norm(eigenvalues_new - eigenvalues) < ε:
break
else:
eigenvalues = eigenvalues_new
eigenvalues_mat[:,i] = eigenvalues
# Extract eigenvalues from the diagonal of the resulting matrix
eigenvalues = np.diag(matrix)
return eigenvalues, eigenvectors, eigenvalues_mat[:,:(i)], matrix
# np.random.seed(1)
# Create a sample symmetric matrix
# matrix = np.random.randn(3,3)
# matrix = (matrix + matrix.T)/2
# 作业7的例子
matrix = np.array([[1,2,0],[2,-1,1],[0,1,3]])
v, _ = np.linalg.eig(matrix)
print("真实的特征值 = " + vec_to_str(v)) # 参考的真实值
真实的特征值 = [-2.3723, 2.0000, 3.3723]
# Perform QR algorithm
N = 40
eigenvalues, eigenvectors, eigv_mat, final_matrix = qr_algorithm(matrix, num_iterations=N, ε=1.0e-6)
print("近似得到的特征值为 = " + vec_to_str(eigenvalues))
err = np.zeros(3)
for i in range(3):
# validate eigen vectors.
err[i] = np.linalg.norm(np.matmul(matrix, eigenvectors[:,i]) - eigenvalues[i] * eigenvectors[:,i])
display(Math("\Vert A v_{i} - \lambda_{i} v_{i}\Vert = "))
print(" " + vec_to_str(err))
print()
plt.figure(figsize=(4,3))
plt.plot(eigv_mat[0,:], 'kx--', label=r"$A_{11}$")
plt.plot(eigv_mat[1,:], 'ro--', label=r"$A_{22}$")
plt.plot(eigv_mat[2,:], 'bd--', label=r"$A_{33}$")
for i in range(3):
plt.plot(eigenvalues[i]*np.ones(N), '-.', color="c")
plt.legend()
plt.show()
近似得到的特征值为 = [ 3.3723, -2.3723, 2.0000]
[ 0.0000, 0.0026, 0.0026]
print(final_matrix)
[[ 3.3723 0. 0. ] [ 0. -2.3723 0.0026] [ 0. 0.0026 2. ]]