第3章: 无约束优化

(1): 下降法

曹语

课程主页: https://yucaoyc.github.io/math3806

背景和目标

我们介绍了一些(无约束的)凸优化问题的例子:

minimize $f(\mathbf{x})$

例如

- ▶ 无约束的最小二乘问题;该优化问题可被应用于拟合数据
- ▶ 无约束的几何规划

问题: 为什么我们不考虑无约束的线性规划问题呢?

本章目标:介绍算法来近似计算上述优化问题的最优解

- ▶ 下降法(及其变式)→ 这节课的内容
- ▶ 牛顿法

情景设定和算法的含义

目标是近似求解如下问题:

minimize
$$f(\mathbf{x})$$
, $\mathbf{x} \in \mathbb{R}^n$

假设

- ▶ f 是凸函数
- ▶ ∇f 和 $\nabla^2 f$ 可计算
- ▶ 最优解 x^* 存在; 将 $f(x^*)$ 标记为符号 p^*

算法: 通过找到一个序列 $\{x^{(0)}, x^{(1)}, \cdots, x^{(k)}, \cdots\}$ 使得 $f(x^{(i)})$ 随着 i 的增加而不断减小;基于误差阈值 ϵ ,输出某个 $x^{(k)}$,若 $f(x^{(k)}) \leq p^* + \epsilon$ 。

因此,事实上我们会考虑在如下的区间进行优化:

$$S = \left\{ \boldsymbol{x} \in \mathbb{R}^n \mid f(\boldsymbol{x}) \leqslant f\left(\boldsymbol{x}^{(0)}\right) \right\}$$

为简化, 我们直接假设 S 是闭集。

需要解决的算法问题:

- Q1 基于 $\mathbf{x}^{(k)}$, 如何更新得到 $\mathbf{x}^{(k+1)}$, 使得 $f(\mathbf{x}^{(k+1)}) < f(\mathbf{x}^{(k)})$?
- Q2 如何选择终止的判断方式?

因此,事实上我们会考虑在如下的区间进行优化:

$$S = \left\{ \boldsymbol{x} \in \mathbb{R}^n \mid f(\boldsymbol{x}) \leqslant f\left(\boldsymbol{x}^{(0)}\right) \right\}$$

为简化, 我们直接假设 S 是闭集。

需要解决的算法问题:

- Q1 基于 $\mathbf{x}^{(k)}$, 如何更新得到 $\mathbf{x}^{(k+1)}$, 使得 $f(\mathbf{x}^{(k+1)}) < f(\mathbf{x}^{(k)})$?
- Q2 如何选择终止的判断方式?

由于最优解满足 $\nabla f(\mathbf{x}) = 0$,因此我们可以选择 $\|\nabla f(\mathbf{x}^{(k)})\| \le \eta$ (其中 η 是某个提前选择的小的参数,例如 $\eta = 10^{-5}$)

目录

- 1. 下降方法
- 2. 直线搜索
- 3. 梯度下降法
- 4. 最速下降法
- 5. 总结

下降方法

我们根据某个方向 $\Delta x^{(k)}$ 来更新

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \mathbf{t}^{(k)} \Delta \mathbf{x}^{(k)}, \qquad \mathbf{t}^{(k)} > 0$$

- ▶ $\Delta x^{(k)}$ 被称为搜索方向
- ▶ t^(k) 被称为称为第 k 次迭代的步长

考虑若需要沿着该方向的函数值(严格)变小;考虑 $g(t) = f(\mathbf{x}^{(k)} + t\Delta\mathbf{x}^{(k)})$

$$0 > \mathbf{g}'(0) = \underline{\hspace{1cm}}?$$

因此, 我们会需要

$$\nabla f(\mathbf{x}^{(k)})^{\top} \Delta \mathbf{x}^{(k)} < 0$$

我们称这样的方向为下降方向。

问题:有没有可能满足 $\nabla f(\mathbf{x}^{(k)})^{\top} \Delta \mathbf{x}^{(k)} < 0$ 的下降方向 $\Delta \mathbf{x}^{(k)}$ 无法找到呢?

可以讨论两种情况: $\nabla f(\mathbf{x}^{(k)}) \neq \mathbf{0}$ 和 $\nabla f(\mathbf{x}^{(k)}) = \mathbf{0}$ 。

通用下降方法

Algorithm 1: 通用下降方法

Input: $x^{(0)}$

- 1 k = 0
- 2 while 终止条件不满足,且 k < N do
- 3 | 确定下降方向 $\Delta x^{(k)}$
- 4 直线搜索: 选择步长 $t^{(k)} > 0$
- $\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + t^{(k)} \Delta \mathbf{x}^{(k)}$
- 6 $k \leftarrow k+1$

7 end

此处的通用方法中,有 两处有待进一步确认:

任务 1 确定下降方向任务 2 直线搜索

目录

- 1. 下降方法
- 2. 直线搜索
- 3. 梯度下降法
- 4. 最速下降法
- 5. 总结

方式 (1): 精确直线搜索/Exact line search

$$t = \operatorname{argmin}_{s \geqslant 0} f(\mathbf{x} + s\Delta \mathbf{x})$$

优劣对比:

▶ 好处: 比较精确, 且函数值下降快

▶ 坏处: 计算成本一般而言比较高

使用场景: 如果计算该问题的成本远小于确定下降方向的成本时,我们可以考虑该方法(例如,计算函数值所需的时间远小于计算梯度的时间)

方式 (2): 回溯直线搜索/Backtracking line search

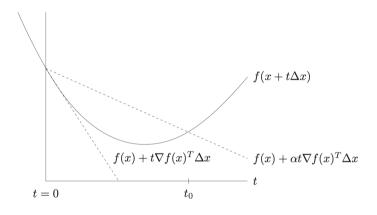
给定参数 $\alpha \in (0, 0.5), \beta \in (0, 1)$

Algorithm 2: 回溯直线搜索

Input: t_0 (一般选 $t_0 = 1$), 当前位置 x, 下降方向 Δx

Result: t

- $t \leftarrow t_0$
- 2 while $f(\mathbf{x} + t\Delta \mathbf{x}) > f(\mathbf{x}) + \alpha t \nabla f(\mathbf{x})^{\top} \Delta \mathbf{x}$ do
- $3 \mid \Leftrightarrow t \leftarrow \beta t$
- 4 end
- ▶ 由于 Δx 是下降方向,只要 t 足够小,就一定可以满足上述终止条件
- ▶ 终止条件 $f(\mathbf{x} + t\Delta\mathbf{x}) \leq f(\mathbf{x}) + \alpha t \nabla f(\mathbf{x})^{\top} \Delta \mathbf{x}$ 也称为Armijo's condition



经验而言: 正常取值 α 在 $0.01 \sim 0.3$ 之间; β 在 $0.1 \sim 0.8$ 之间

目录

- 1. 下降方法
- 2. 直线搜索
- 3. 梯度下降法
- 4. 最速下降法
- 5. 总结

梯度下降法

梯度下降法: 考虑

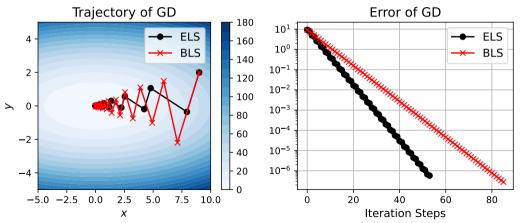
$$\Delta \mathbf{x} = -\nabla f(\mathbf{x})$$

然后可以搭配精确直线搜索,或者回溯直线搜索来使用。

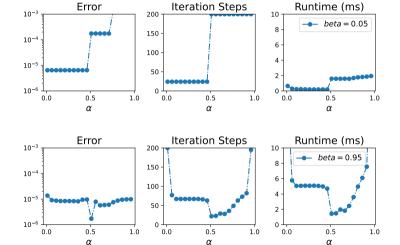
实验 1: 不同直线搜索的对比

考虑如下的函数 $f(\mathbf{x}) = \frac{1}{2}(x_1^2 + \gamma x_2^2)$

某组实验的结果如下(具体见代码):

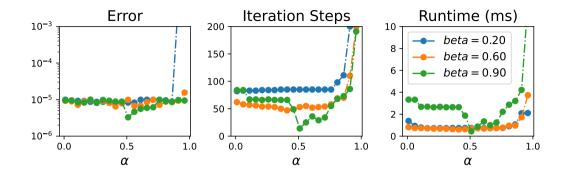


实验 2: 回溯直线搜索的参数的影响



显然希望 $\alpha < 1/2$; 若 $\alpha \in (0,1/2)$ 之间,选择影响不大

我们不太希望选过 大的 $\beta \approx 1$,因为 这样运行时间太长



我们可得到如下观察:

- ightharpoonup $\alpha < 1/2$,但也别太小,比如 α 在 $0.1 \sim 0.5$ 之间都还可以;
- ▶ $\beta \approx 1$ 不太好是因为搜索需要时间太长; $\beta \approx 0$ 不太好是因为搜索过于粗糙, 使得结果没其他参数好;
- ightharpoonup 在前面提到的经验的取值范围中, α 和 β 对于结果的影响并不显著。

实验 3: 问题本身的影响

考虑
$$f(\mathbf{x}) = \frac{1}{2}(\mathbf{x}_1^2 + \gamma \mathbf{x}_2^2)$$

假设选择点 $\mathbf{x}^{(k)} = (\mathbf{a}, \mathbf{b})$,对于梯度下降法 + 精确直线搜索,我们计算得知

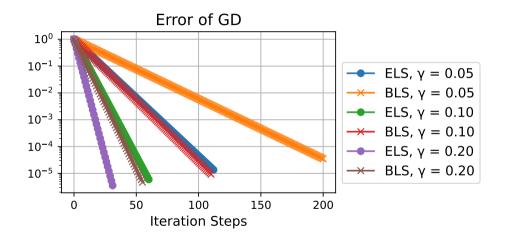
$$t = \frac{a^2 + b^2 \gamma^2}{a^2 + b^2 \gamma^3} \qquad \mathbf{x}^{(k+1)} = \left(\frac{ab^2 (\gamma - 1)\gamma^2}{a^2 + b^2 \gamma^3}, -\frac{a^2 b (\gamma - 1)}{a^2 + b^2 \gamma^3}\right)$$

我们可以直接验证:

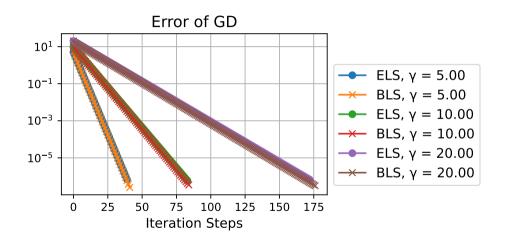
$$\frac{f\left(\mathbf{x}^{(k+1)}\right)}{f\left(\mathbf{x}^{(k)}\right)} = \frac{a^2b^2(\gamma-1)^2\gamma}{(a^2+b^2\gamma)(a^2+b^2\gamma^3)} = \frac{(\gamma-1)^2\gamma}{\left(1+(b/a)^2\gamma\right)\left((a/b)^2+\gamma^3\right)} \leq \left(\frac{\gamma-1}{\gamma+1}\right)^2$$

- ▶ 当 $\gamma \approx 0$ 或 $\gamma \approx \infty$ 时,收敛比较慢; 当 $\gamma \approx 1$ 时,仅需几步即可收敛。
- ▶ 若初值 $\mathbf{x}^{(0)} = (\gamma, 1)$,上述的不等号成为等号,即 $\frac{f(\mathbf{x}^{(k+1)})}{f(\mathbf{x}^{(k)})} = (\frac{\gamma-1}{\gamma+1})^2$, $\forall k$ 。

对于初值 $x_0 = (\gamma, 1)$, 验证了 γ 很小的时候, 问题找到精确解变难。

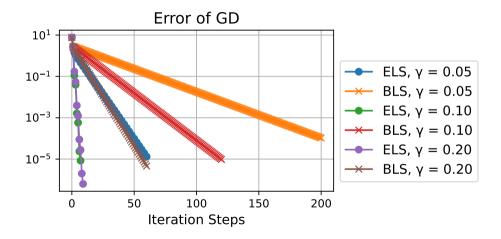


对于初值 $x_0 = (\gamma, 1)$, 验证了 γ 很大的时候, 问题找到精确解变难。



实验 4: 初值对于问题的影响

问题的初值对于结果影响也很大:对此处的实验,我们取相同的 $x^{(0)}$



问题的初值对于结果影响也很大:对此处的实验,我们取相同的 $x^{(0)}$



之前描述的 $\gamma \to \infty$ 和 $\gamma \to 0$ 时,收敛变难是指针对所有点的最差情况,但是对于特殊的初始 $\mathbf{x}^{(0)}$,情况不一定完全吻合。

实验现象总结

- ▶ 梯度法具有线性收敛,即 $\log e_N \approx -aN + b$,或者说 $e_N \approx ce^{-aN}$ $(a, c > 0, b \in \mathbb{R})$
- ▶ 回溯直线搜索的参数 α , β 对结果有影响,但不是特别本质;很多时候,回溯直线搜索的效果和精确直线搜索效果差不多,计算代价一般低很多
- ▶ 问题本身对于收敛速度的影响很大(在下一部分,我们会提到条件数的概念来量化这个;理论验证大多数时候无法考虑单个初值的情况,而是考虑最差的情况)

部分实验现象的理论解释将是本章第 (2) 部分需要尝试解决的问题。

目录

- 1. 下降方法
- 2. 直线搜索
- 3. 梯度下降法
- 4. 最速下降法
- 5. 总结

最速下降法

最速下降法: 考虑梯度下降法的规范化版本

$$\Delta \mathbf{x} = \arg\min \left\{ \nabla f(\mathbf{x})^{\top} \mathbf{v} \mid \|\mathbf{v}\| = 1 \right\}$$

- ▶ 若范数为 L^2 ,则 $\Delta x = -\frac{\nabla f(x)}{\|\nabla f(x)\|_2}$
- ▶ 若范数为 L^1 ,则 $\Delta x = -\text{sign}(\frac{\partial f(x)}{\partial x_i})e_i$,其中坐标 i 是数值 $\nabla f(x)_i$ 中绝对值意义下最大的值的坐标。

例子: 若
$$\nabla f(\mathbf{x}) = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$$
,则 $\Delta \mathbf{x} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$

该方法有时又称坐标下降算法

ho (二次 P-范数) 若 $\|\mathbf{v}\|_{\mathbf{P}} := \sqrt{\mathbf{v}^{\top}\mathbf{P}\mathbf{v}} = \|\mathbf{P}^{1/2}\mathbf{v}\|_{2}$, 其中 \mathbf{P} 是正定矩阵,则

$$\Delta \mathbf{x} \propto -\mathbf{P}^{-1} \nabla f(\mathbf{x})$$

几何含义:考虑变换坐标 $\bar{x} = P^{1/2}x$,优化问题等价于

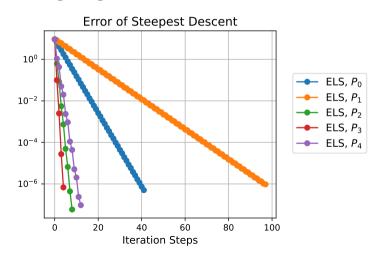
$$\min ar{f}(ar{m{x}}) = f(m{P}^{-1/2}ar{m{x}})$$

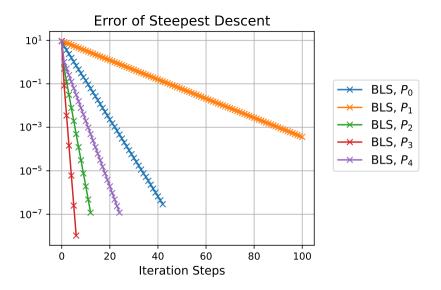
在 $\bar{\mathbf{x}}$ 的坐标中,Euclidean 距离意义下的最速下降方向为 $\Delta \bar{\mathbf{x}} \propto -\mathbf{P}^{-1/2} \nabla f(\mathbf{x})$,因此对应原坐标系

$$\Delta oldsymbol{x} = oldsymbol{P}^{-1/2} \Delta ar{oldsymbol{x}} \propto -oldsymbol{P}^{-1}
abla f(oldsymbol{x})$$

不同最速下降法的选择

选择不同的
$$\mathbf{P}_k = \begin{bmatrix} 1 & 0 \\ 0 & \theta_k \end{bmatrix}$$
; $\theta_0 = 1$, $\theta_1 = 4$, $\theta_2 = \frac{1}{4}$, $\theta_3 = \frac{1}{4.8}$, $\theta_4 = \frac{1}{10}$, $\gamma = 5$





实现坐标变换的矩阵 P 的选择很关键!

目录

- 1. 下降方法
- 2. 直线搜索
- 3. 梯度下降法
- 4. 最速下降法
- 5. 总结

总结

- ▶ 知道算法设计的核心是更新 **x**^(k) 和选择终止条件
- ▶ 了解使用 $\|\nabla f(\mathbf{x})\| \le \eta$ 作为终止条件这一选择
- ▶ 能够知道更新 $x^{(k)}$ 中需要的两个组件: <u>直线搜索</u>、确定下降方向
- ▶ 并且分别知道两个组件的两种选择
- ▶ 对于数值实验的结果有直观印象

阅读作业 & 参考资料:

▶ 课本第 9.1 - 9.4 章